
CPSC 320 Notes: Memoization and Dynamic Programming

March 2, 2015

You work for the First CitiWide Bank, a bank that makes change. That's just what you do.

1 Greedy Change (on your own, outside class)

Assuming an unlimited supply of quarters (25 cents), dimes (10 cents), nickels (5 cents), and pennies (1
cent, once upon a time), give a greedy algorithm to make change for n ≥ 0 cents using the smallest total
number of coins. Prove your algorithm correct.

2 Brother, I Can't Spare a Nickel

Imagine the Canadian government accidentally eliminated the nickel rather than the penny. (That is,
assume you have an unlimited supply of quarters, dimes, and pennies, but no nickels.)

1. Prove that the natural adaptation of the greedy algorithm is not optimal (i.e., does not use the
minimum number of coins).

2. We can solve this problem with something like a divide-and-conquer algorithm.

(a) To make the change, you must start by handing the customer some coin. What are your options?

(b) Imagine that to make 81 cents of change using the fewest coins possible, you start by handing
the customer a quarter. Clearly describe the problem you are left with.

(c) Write down descriptions of the subproblems for each of your other ��rst coin� options.

(d) Given an optimal solution to each subproblem, how will you tell which coin to choose �rst?
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3. It's hard to describe a recursive algorithm without naming it. We'll name the algorithm CCC(n) (for
CountCoinsChange(n)). CCC(n) returns the minimum number of coins required to make c cents
of change using only pennies, dimes, and quarters. Finish CCC's implementation below:

CCC(n):

If n < 0:

Return infinity

Else, If n = 0:

Return _______________

Else, n > 0:

Return the _______________ of these possibilities:

_________________________________________

_________________________________________

_________________________________________

4. CCC does not actually return an optimal solution (the change to give), only the number of coins in
an optimal solution. If we imagine allowing CCC to have two return values (e.g., returning a more
complex object than an integer), it can also return the solution. Describe how.

5. Finish this recurrence for the runtime of CCC:

T(n) = 1 for n ________

T(n) = ____________________________ otherwise

6. Give a depressing Ω-bound on the runtime of CCC. Hint: try replacing T (n) with a simpler one that
lower-bounds T (n) but makes the recursion tree much easier to draw.

7. Why is the performance so bad?
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3 If I Had a Nickel for Every Time I Computed That

1. Rewrite CCC, this time storing (memoizing) each solution as you compute it so that you never
compute any solution more than once (for a given call to CCC).

CCC(n):

Create a new array Soln of length n

Initialize each element Soln[i] for 1 <= i <= n to:

_______________________

Return CCCHelper(n, Soln)

CCCHelper(n, Soln):

If n < 0:

Return infinity

Else, If n = 0:

Return _______________

Else, n > 0:

2. Not counting the cost of the �rst computation of CCCHelper(x,...) for all x < 81, give a good
Θ-bound on the runtime of CCCHelper(81,...).

3. Not counting the cost of any other call's �rst computation, give a good Θ-bound on the runtime of
the �rst comutation of CCCHelper(x,...) for all 1 ≤ x ≤ c, where c is the amount requested on the
�rst call to CCCHelper.

4. Give a Θ-bound on the total cost of all these �rst computations.

5. Explain why this Θ-bound also bounds the total runtime of the algorithm.
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4 Growing from the Leaves

The technique from the previous part is called �memoization�. Turning it into �dynamic programming� just
requires changing the order in which we consider the subproblems.

1. Finish this formula for Soln(i) in terms of smaller entries in Soln. (This is also a recurrence, just
like the ones we use to measure performance!)

Soln(i) = infinity for i < 0

Soln(0) = 0

Soln(i) = ________________________________________ otherwise

2. Which entries of the Soln array need to be �lled in before we're ready to compute the value for
Soln[i]?

3. Give a simple order in which we could compute the entries of Soln so that all previous entries needed
are already computed by the time we want to compute a new entry's value.

4. Take advantage of this ordering to rewrite CCC without using recursion:

Note: it's handy to pretend Soln has 0 and negative entries.

We use SolnCheck to do that.

SolnCheck(Soln, i):

If i < 0: Return _______________

Else if i = 0: Return _______________

Else: Return Soln[i]

CCC(n):

Create a new array Soln of length n

For i = ______________________________________:

Soln[i] = the ____________ of:

_______________________________________,

_______________________________________, and

_______________________________________.

Return Soln[n]
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5. Both the dynamic programming and memoized versions of CCC run in the same asymptotic time.
Asymptotically in terms of n, how much memory do these versions of CCC use?

6. Imagine that you only wanted the number of coins returned from CCC. In the dynamic programming
version how much of the Soln array do you really need at one time? If you take advantage of this,
how much memory does it use, asymptotically?

5 Foreign Change

Modify the memoized and dynamic programming versions of CCC so that it handles foreign currencies
where you receive the target amount n and an array of coin values [c1, c2, ..., ck]. (So, for dimes and
quarters, the array would look like [10, 25].)

Analyse the runtime of your algorithm in terms of n and k.
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6 Challenge

1. Modify the dynamic programming solution to return both the number of coins used and the solution
while using only constant memory. Hint: it helps when storing partial solutions that you don't care
what order you give the coins out in.

2. Count the number of di�erent ways to make n cents in change using quarters, dimes, nickels, and
pennies (again, using memoization and/or dynamic programming).

(a) First, assume that order matters (i.e., giving a penny and then a nickel is di�erent from giving
a nickel and then a penny).

(b) Then, assume that order does not matter.

3. Solve the �minimum number of coins� change problem if you do not have an in�nite supply and
instead are given the available number of each coin as a parameter [num_quarters, num_dimes,

num_nickels]. (Assume an in�nite number of pennies.)

4. Prove that you can take at least one greedy step if the algorithm takes two coins [c1, c2], and n is
at least as large as the least common multiple of c1 and c2.

5. Extend this �least common multiple� observation to more coins.

6. Find the SNL video on the First Citiwide Bank of Change, hampered by your presence in Canada.
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