
CPSC 320 Notes: DP in 2-D

March 11, 2015

The Longest Common Subsequence of two strings A and B is the longest string whose letters appear in

order (but not necessarily consecutively) within both A and B. For example, the LCS of snow and naomi is

the length 2 string no.

(Biologists: If these were DNA base or amino acid sequences, can you imagine how this might be a

useful problem?)

1. Consider the two strings tycoon and country. Describe the relationship of their LCS with the LCS

of tycoon and countr (the same string A and string B with its last letter removed).

2. Now consider the two strings stable and marriage. Describe the relationship of their LCS with the

LCS of stabl and marriag (strings A and string B with their last letters removed).

3. Given two strings A and B of length n > 0 and m > 0, break the problem of �nding the LCS(A[1..n],

B[1..m]) down into a recurrence over smaller problems:

LCS(A[1..n], B[1..m]) =

the ________________ of

___________________________________________,

___________________________________________, and

___________________________________________

4. Given two strings A and B, if either has a length of 0, what is their LCS?

1



5. Complete the following table to �nd the length of the LCS of tycoon and country using dynamic

programming and your recurrence:

c o u n t r y

t

y

c

o

o

n

6. Go back to the table and extract the actual LCS from it. Circle each entry of the table you have to

inspect in constructing the LCS.

7. Analyse the e�ciency of your algorithm in terms of runtime and (additional, beyond the parameters)

memory use. You may assume the strings are of length n and m, where n ≤ m (without loss of

generality).

8. If we only want the length of the LCS of A and B with lengths n and m, where n ≤ m, explain how

we can �get away� with using only O(n) memory.

1 Challenge

1. Prove that if two strings end in the same letter, you can ignore all but one of the �options� in your

recurrence.

2. Give a LCS algorithm that runs in the same asymptotic runtime as the one above, uses only O(m+n)
space (note that this is potentially more than the �space-e�cient� version mentioned above), and

returns not only the length of the LCS but the LCS itself. (Note: try this for yourself for a while,

and then walk through the description of the awesome algorithm in section 6.7 if you need help.)

2


	Challenge

