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Let's take a problem from recursive solution (recurrence) to memoized and DP implementation.

PROBLEM: Given two strings, �nding their Longest Common Subsequence (LCS). The LCS of A and

B is the longest string whose letters appear in order (but not necessarily consecutively) within both A and

B. For example, the LCS of snow and naomi is the length 2 string no.

Our recurrence for the length of the LCS of strings A with length n and B with length m (respectively)

is below. (For optimization problems, we usually �rst �nd �the value of the best solution� rather than �the

best solution�.)

LCS(n,m) =


min(LCS(n− 1,m),LCS(n,m− 1),LCS(n− 1,m− 1) + 1) if m > 0, n > 0, and A[n] = B[m]

min(LCS(n− 1,m),LCS(n,m− 1)) if m > 0, n > 0, and A[n] 6= B[m]

0 if m = 0 or n = 0

(In fact, we can change the �rst case to just LCS(n− 1,m− 1) + 1 if we want.)

1 Build Small Examples

Let's write down small examples to test our recurrence beyond the examples we used to understand the

problem. We already have the given examples. (A = �snow� and B = �naomi� have an LCS �no� of length

2 while A = �country� and B = �tycoon� have an LCS �con� of length 3.) In addition, construct:

1. The smallest, trivial example.

2. Examples to test base cases besides the smallest, trivial example.

3. Example to test when we make progress (A[n] = B[m]). (Note that you won't be able to test when,

e.g., LCS(n− 1,m) is the right move at the same time as A[n] = B[m] because it never is!)

4. Examples to test the other cases when A[n] 6= B[m]. Test both when the right move is to strip a

character from A and when the right move is to strip a character from B.
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2 Naïve Implementation

You should always start with the most naïve possible implementation.

1. In your favorite language, write a �stub� (a function that just returns 0) for LCS.

2. Program your test cases. (In any language, you can just write �if LCS(<input>) is equal to <expected

result> then output `yay' else output `eep'.� Hopefully your language also supports exceptions,

assertions, unit testing, or the like as well!)

3. Program the recurrence as directly as possible (as the �naïve solution�).

4. Test it. How well does it do on the examples we have so far?

5. Write a function that generates a random string of As, Cs, Gs, and Ts of a given length, and test how

well the naïve solution scales to two randomly generated strings of various (equal) lengths.

3 Memoization

Converting a recursive solution to a memoized one is surprisingly easy. Use this template to convert yours.

(The �global table� mentioned can be an array. In many languages, it works well as a hash table instead.

Furthermore, it usually doesn't actually need to be global. E.g., you can build the table in a function that

passes it to a helper function to solve the instance and then throw away the table when the helper is done.)

Create a global table named Solns large enough

to store solutions to all subproblems of interest

Initialize all entries of Solns to a flag meaning "empty"

Algorithm(parameters):

If Solns[parameters] is empty:

<insert your naive code here, changing anything like

Return EXPRESSION

to

Solns[parameters] = EXPRESSION>

Return Solns[parameters]

1. Write a memoized version of your solution named LCSM. Don't forget to rename your recursive calls

from LCS to LCSM, or you'll call the old version!

2. Test out your memoized version on the test cases. How well does it scale?
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4 Extracting the Solution

You can generally take the �lled-in memoization (or dynamic programming) table and the recurrence and

use them to write code to extract the actual solution. Call the recurrence with the complete problem and

then alter it so instead of calculating the value of the solution, it �nds which of the already-stored choices

was the right one, recurses into that one to extract the solution, and then outputs whatever portion of the

solution that choice represents.

Here's what that might look like as a template:

ExtractSolution(parameters):

<insert your naive code here, but:

1. In the base case, just return.

2. In the recursive case:

a. Determine WHICH choice was the best, not what value it gives.

(Either use the table or call your memoized version, which

will itself use the table.)

b. Call ExtractSolution on the parameters for that choice.

c. Output whatever that choice MEANS for the solution.>

1. Write LCSM_Solve, which actually produces the longest common subsequence of two strings.

2. Modify your test cases to work for this function and then test its performance.
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5 Dynamic Programming

Dynamic programming requires a bit more e�ort than memoization because the template requires you to

carefully order the solutions:

Create a global table named Solns large enough

to store solutions to all subproblems of interest

Initialize all entries of Solns to a flag meaning "empty"

Algorithm(parameters):

For all subproblems P in an order that ensures that

each subproblem P depends on has ALREADY been solved

when you solve P:

<insert your naive code here, changing anything like

RecursiveCall(parameters)

to

Solns[parameters]

and anything like:

Return EXPRESSION

to

Solns[parameters] = EXPRESSION>

Return Solns[parameters]

1. Write a dynamic programming (DP) version of your solution named LCSDP1.

2. Test out your DP version on the test cases. How well does it scale?

3. Write a new DP version named LCSDP2 that solves the problems in a di�erent order and test it.

4. Adapt LCSM_Solve to work with LCSDP1 and call it LCSDP1_Solve. (You shouldn't need to change

much, since they both build the same table!) Test it.

6 Challenge

It turns out you can automatically memoize a function just by using a hash table where the key is the

collection of parameters passed to the function. Do that in your favorite language.
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