
CPSC 320 Assignment #6

March 16, 2015

Due date: Monday, 2015/03/23 at 5PM
You'll submit this assignment electronically (only one submission per

team of up to two students, please!) through handin. Hand in to cs320 with

the target assn6 by the due time above.

In your submission, include a plain text �le named README.txt
with all relevant information from our assignment cover page and any spe-

cial notes you have; a plain text �le named SOLUTIONS.txt with
the textual information requested below; and the graph image re-
quested below. Clearly indicate where each problem begins and
ends. Make code clear, well-indented, and well-commented! How-

ever, you need not include peripheral material (e.g., your main, boilerplate

like the #lang line in a Racket �le, setup required for your testing, etc.).

We guarantee that we will mark at least 5 parts the assignment.

For this assignment, you'll work through a thorough solution to the text-

book's problem 6.6 (on page 317, the one beginning �In a word processor,

the goal. . . �).

1. Give a good set of examples to explore the problem. (A �good� set

should explore trivial cases, cases that may be base cases for your

recurrence, a couple of small but not trivial cases, and at least one

substantial case. For the last, you may use the one given in the text.)

There are some implicit constraints on instances of the problem; be sure

to give at least one example that violates these and explain why it's

an instance that cannot be solved. Submit: examples and solutions

(sum of squares of slack space and correct line breaks) as text, along

with the discussion of constraints.

2. Give a mathematical recurrence for the cost (sum of squares of slacks)

of the optimal solution. (If you like, you may instead give short, re-

cursive pseudocode. This shouldn't be an e�cient solution, however.

1

https://my.cs.ubc.ca/docs/handin-instructions
http://blogs.ubc.ca/cpsc320/files/2015/01/assign-cover-page.pdf


It's just a correct recursive solution without unnecessary parameters.)

Submit the recurrence (or pseudocode) as text.

3. Give an analysis of the memory use and runtime of a memoized version

of the recurrence. (You shouldn't need to implement it to analyse it!)

Submit your bounds and the work you used to get them as
text.

4. Tell us your favorite language. Use it for the implementation problems

below. Submit just the name of the language so we know what
we're reading!

5. Implement the recurrence naïvely. (I.e., straightforwardly translate

the recurrence to code, which can have (super-)exponential runtime.)

Submit the recursive version as text.

6. Implement a memoized version of the same code. Submit the mem-
oized version version as text.

7. Implement a dynamic programming version of the same code (main-

taining the whole table). Submit the dynamic programming ver-
sion as text.

8. Implement a �solution extractor� that takes the original instance and

the table of solutions created by the memoizing or dynamic program-

ming solution and outputs the text nicely divided into lines. Adapt

your test cases to test this �end-to-end� solution. (You may �feed it�

with either your memoized or DP solution.) Submit the solution
extractor as text.

9. Implement a function that takes in a number n and a list of words�

one per line�and produces a random �text�, a list of words each cho-

sen uniformly at random from the word list (allowing duplicates).

You can �nd a great list of words on remote.ugrad.cs.ubc.ca in

/usr/share/dict/words. Submit the function as text.

10. Graph the original recursive, memoized recursive, and dynamic pro-

gramming solution on problems of a few interesting sizes using your

generator above. Submit: the graph as a separate JPEG, PNG, BMP,

GIF, or PDF �le named �GRAPH� with an appropriate extension.

2


