
2 2 3 6 3 7 0 6 0 3 6 4 2

 

Important notes about this examination

1. You have 50 minutes to complete this exam.  

2. You are allowed up to three textbooks and (the equivalent of) a 3" 3‐ring binder of notes as references. 
Otherwise, no notes, aids, or electronic equipment are allowed. 

3. Please see the regulations regarding student conduct during examinations on the opposite side of this page! 
4. All students in your designated group collaborate to produce a single submission. 
5. Good luck! 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

THE UNIVERSITY OF BRITISH COLUMBIA 
CPSC 320: MIDTERM EXAM #2 – Group – March 12, 2015 

Please do not write in this space:

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Full Name:______________________

Signature:______________________ 

UBC Student #: 

Question 1: 

Question 2: 

Question 3: 

Question 4: 

Question 5: 

Question 6: 

Question 7: 

Question 8: 

Question 9: 

Question 10: 



Student Conduct during Examinations 
1. Each examination candidate must be prepared to produce, upon the request of the 

invigilator or examiner, his or her UBCcard for identification. 
2. Examination candidates are not permitted to ask questions of the examiners or invigilators, 

except in cases of supposed errors or ambiguities in examination questions, illegible or 
missing material, or the like. 

3. No examination candidate shall be permitted to enter the examination room after the 
expiration of one-half hour from the scheduled starting time, or to leave during the first half 
hour of the examination. Should the examination run forty-five (45) minutes or less, no 
examination candidate shall be permitted to enter the examination room once the 
examination has begun. 

4. Examination candidates must conduct themselves honestly and in accordance with 
established rules for a given examination, which will be articulated by the examiner or 
invigilator prior to the examination commencing. Should dishonest behaviour be observed 
by the examiner(s) or invigilator(s), pleas of accident or forgetfulness shall not be received. 

5. Examination candidates suspected of any of the following, or any other similar practices, 
may be immediately dismissed from the examination by the examiner/invigilator, and may 
be subject to disciplinary action: 
i. speaking or communicating with other examination candidates, unless otherwise 

authorized; 
ii. purposely exposing written papers to the view of other examination candidates or 

imaging devices; 
iii. purposely viewing the written papers of other examination candidates; 
iv. using or having visible at the place of writing any books, papers or other memory aid 

devices other than those authorized by the examiner(s); and, 
v. using or operating electronic devices including but not limited to telephones, calculators, 

computers, or similar devices other than those authorized by the examiner(s)—
(electronic devices other than those authorized by the examiner(s) must be completely 
powered down if present at the place of writing). 

6. Examination candidates must not destroy or damage any examination material, must hand in 
all examination papers, and must not take any examination material from the examination 
room without permission of the examiner or invigilator. 

7. Notwithstanding the above, for any mode of examination that does not fall into the 
traditional, paper-based method, examination candidates shall adhere to any special rules 
for conduct as established and articulated by the examiner. 

8. Examination candidates must follow any additional examination rules or directions 
communicated by the examiner(s) or invigilator(s). 

 



�

∑x
y=1 y = x(x+1)

2 , for x ≥ 0.

�

∑x
y=1 y

2 = x(x+1)(2x+1)
6 , for x ≥ 0.

�

∑x
y=0 2y = 2x+1 − 1, for x ≥ 0.

For a recurrence like T (n) = aT (nb ) + f(n), where a ≥ 1 and b > 1, the Master Theorem states three

cases:

1. If f(n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If for some constant k ≥ 0, f(n) ∈ Θ(nc(log n)k) where c = logb a, then T (n) ∈ Θ(nc(log n)k+1).

3. If f(n) ∈ Ω(nc) where c > logb a and af(nb ) ≤ kf(n) for some constant k < 1 and su�ciently large

n, then T (n) ∈ Θ(f(n)).

� f(n) ∈ O(g(n)) (big-O, that is) exactly when there is a positive real constant c and positive integer

n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ o(g(n)) (little-o, that is) exactly when for all positive real constants c, there is a positive

integer n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ Ω(g(n)) exactly when g(n) ∈ O(f(n)).

� f(n) ∈ ω(g(n)) exactly when g(n) ∈ o(f(n)).

� f(n) ∈ Θ(g(n)) exactly when f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

3



1 Canopticon [8 marks]

VERBATIM COPY OF PRACTICE PROBLEM TEXT FROM HERE. . .

Classify each of the following recurrences (assumed to have base cases of T (1) = T (0) = 1) into one of the

three cases of the Master Theorem�the cases in which leaves dominate, in which the root dominates, and

in which the work is balanced across levels�or indicate that the Master Theorem does not apply.

...TO HERE. The individual recurrences are di�erent.

1. T (n) = 2T (dn/4e) + 2n

leaves root balanced does not apply

2. T (n) = T (bn/100c) + n2

leaves root balanced does not apply

3. T (n) = 16T (bn/4c) + n2

leaves root balanced does not apply

4. T (n) = 81T (dn/3e) + n3

leaves root balanced does not apply

4



2 Doctoring the Master Theorem [10 marks]

Answer the questions below about this recurrence:

T (n) =

{
T (bn/2c) + T (b2n/3c) + n

√
n when n > 1

1 when n ≤ 1

Throughout this problem, you may ignore �oors and ceilings.

NOTE: the recurrence and some questions or parts of questions have been changed from
practice version.

1. Draw a recursion tree for this recurrence. Include at least two levels (root and children). Label
your tree with: the problem size (in each node), and the work per node (next to each node). [5
marks]

2. Give the depth of the deepest leaf (ignoring �oors and ceilings). [2 marks]

3. Use the Master Theorem to give a Θ-bound on this related recurrence T2(n) = 2T2(n/2)+n
√
n

(which gives an Ω-bound on T (n)). Clearly indicate a, b, and f(n). [2 marks]

4. Use a similar technique to construct a modi�ed recurrence T3(n) from which we could derive an

O-bound on T (n). (DO NOT give a bound on your recurrence.) [1 mark]

5



3 The High Price of Plausible Deniability [11 marks]

VERBATIM COPY OF PRACTICE PROBLEM TEXT FROM HERE. . .

You're solving the interval scheduling problem except minimizing the number of jobs performed rather

than maximizing it. In particular, we de�ne the con�ict set of a job to be the set of all jobs that con�ict

with that job's time range. (Note that the con�ict set of a job always includes the job itself.) Your solution

should minimize the number of jobs performed while still performing exactly one job from each con�ict set.

(Note: we consider two jobs' times to con�ict even if the start time of one job is equal to the �nish time

of the other, i.e., they overlap at only one point.)

UNECESSARY FLAVOR TEXT: Your boss has just given you a list of jobs to perform. Each job

has a start time and an end time. You can never do more than one job at a time. You're kind of tired; so,

you'd like to do as few jobs as possible, but you can't just do nothing or you'll get �red. So, you want to

�nd a list of the smallest number of jobs you can do so that every other job con�icts with (has times that

overlap) at least one of the jobs you are doing.

...TO HERE. Subsequent parts are SUBSTANTIALLY DIFFERENT!

A friend suggests breaking the problem down into two cases: one where we include the �rst job in the

solution and one where we do not include it.
Your friend's algorithm takes array ByStart as input. ByStart is sorted in order of increasing start

time. Each array entry is an object with a start time �eld start and �nish time �eld finish; so,

ByStart[1].start is the �rst job's start time and ByStart[1].finish is its �nish time.

Here is the algorithm:

LazyISP(ByStart):

Return LazyISPHelper(ByStart, 1)

LazyISPHelper(ByStart, i):

If i > length(ByStart):

Return 0

Else:

Let j be the smallest index for which // For part 3 below,

ByStart[j].start > ByStart[i].finish // assume these three

or length(ByStart)+1 if no such index exists // lines take O(1) time

Let v1 be 1 + LazyISPHelper(ByStart, j)

Let v2 be LazyISPHelper(ByStart, i+1)

Return min(v1, v2)

1. Give an instance with no more than 2 jobs that shows that this algorithm is not correct. Indicate
both what the algorithm returns and the correct answer. [1 mark]

6



2. Give a good Θ-bound on the worst-case runtime of the algorithm if we rewrite it to use dynamic

programming (without trying to �x it). Assume that the three lines beginning at Let j be the

smallest take constant time. [2 marks]

3. Rewrite LazyISP below to use dynamic programming (without trying to �x it): [8 marks]

LazyISP(ByStart):

Let Soln be an array of length _________

For i = _______________________________________:

Let j be the smallest index for which

ByStart[j].start > ByStart[i].finish

or length(ByStart)+1 if no such index exists

Let v1 be _________________________________________________________________

Let v2 be _________________________________________________________________

________________________________________________________

Return ______________________________

// Feel free to write a helper function below if you need one!

7



4 I'm a k, You're O(k) [13 marks]

NOTE: This problem deals with design of a divide-and-conquer algorithm and its analysis on
two variables n and k. Otherwise, this is mostly unlike the practice problem of the same name.

Suppose that we are given an array A with n distinct elements and a guarantee that no element in A is more

than k − 1 indexes away from the index it belongs at in a sorted array (for some positive integer k ≤ n),
and we want to sort the array.

For example, the array [15, 3, 19, 12, 16, 10, 21, 18] in sorted order is: [3, 10, 12, 15, 16,

18, 19, 21]. 15 is therefore 3 indexes out of place (would be moved 3 places to the right to put it in the

�correct� spot), 3 is only 1 index out of place (would be moved 1 place to the left), and 19 is 4 indexes out

of place. Overall, the smallest k we could provide for this array is 5 (because 5 − 1 = 4, and both 19 and

10 are 4 indexes out of place).

1. Complete this divide-and-conquer algorithm to sort an array of length n given the array A and the

parameter k described above so that it is well-described by the recurrence:

T (n) =

{
2T (n/2) + T (2k + 1) when n > 2k + 1

k lg k when n ≤ 2k + 1

Do NOT assume (as in the previous part) that k ≤ n ≤ 2k + 1. [4 marks]

HINT: Consider an element that belongs in the right half of the sorted array (e.g., something larger

than the median). What is the smallest index at which you could �nd that element in A?

BoundedSort(A, k):

BSHelper(A, k, 1, length(A))

BSHelper(A, k, lo, hi):

If hi - lo + 1 <= 2k + 1:

MergeSort the portion of A from lo up to hi

Else:

Let mid = lo + ceiling((hi - lo)/2)

BSHelper(A, k, _________________, _________________)

BSHelper(A, k, _________________, _________________)

BSHelper(A, k, _________________, _________________)

8



2. Draw a recursion tree for the closely related recurrence relation below. Include at least two levels
(root and children) and one node from the next level. Label your tree with: the problem
size (in each node), the work per node (next to each node), the total work per level, and a

general form for the work per level (labelling the level i to avoid confusion with k above). [6
marks]

The recurrence is:

T (n) =

{
2T (n/2) + k lg k when n > 2k + 1

k lg k when n ≤ 2k + 1

3. Use your tree to show that the recurrence above is in O(n lg k). Show your work. You may

(correctly!) assume that the height of the tree is lg(nk ). Reminder:
∑n

i=0 2i = 2n+1 − 1. [3 marks]

9



5 I Want the Truth [8 marks]

VERBATIM COPY OF PRACTICE PROBLEM TEXT FROM HERE. . .

For each statement below, circle one answer to indicate whether the statement is always true, never true,
or sometimes true for the circumstances indicated. So, if every possibility indicated causes the statement

to be true, answer �always�. If none causes the statement to be true, answer �never�. If some cause the

statement to be true and others cause it to be false, answer �sometimes�.

...TO HERE. The individual questions are di�erent.

1. Evaluate this statement over the possible input arrays of integers with length of at least 10 passed to

the algorithm: The RandomizedQuickSelect algorithm picks the smallest element as its pivot.

always true never true sometimes true

2. Evaluate this statement over the set of all realistic divide-and-conquer algorithms: Divide-and-conquer

algorithms solve non-base-case inputs by: dividing the input into two subproblems, solving the two

subproblems, and then computing a solution based on the subproblems' solutions.

always true never true sometimes true

3. Evaluate this statement over the legal instances of the closest pair of points problem with at least four

points: A pair of points is less than δ apart within the δ-wide strip on the left side of the dividing

line (i.e., both points are on the left side) on the top-level recursive call to the divide-and-conquer

closest pair of points algorithm.

always true never true sometimes true

4. Evaluate this statement over the instances of weighted ISP (interval scheduling problem) in which all
weights are the same (e.g., all 3 or all 7): Running the greedy algorithm for unweighted ISP on

the instance (with the weights deleted) selects as a solution a set of jobs that would also be optimal

if selected in the original instance.

always true never true sometimes true

10



6 Bonus [Up to 4 Bonus Marks]

Bonus marks add to your exam total and also to your course bonus total. What course bonus points are

worth still isn't clear, however! WARNING: These questions are too hard for their point values. We are

free to mark these questions harshly. Finish the rest of the exam before attempting these questions. Do

not taunt these questions.

1. In �I'm a k, You're O(k)", justify each of the following statements: [2 marks]

(a) k ≤ n

(b) If n ≤ 2k+ 1, then using MergeSort to sort the whole array runs in O(k lg k) time. (Justify this

carefully for credit!)

(c) Give an example of a function f(n) such that f(n) 6∈ O(f(k)) even when n ∈ Θ(k).

11



2. Imagine we have n ≥ 0 indistinguishable (i.e., look-alike) balls and k ≥ 1 indistinguishable jars. How

many di�erent ways are there to put the balls in the jars? Your solution must run in O(kn) time. [2
marks]

Explanation: Consider n = 2, k = 2, that is, two balls and two jars. What we mean by indistinguish-

able balls is that all you know about a jar is how many balls are in it, not which ones. So, if you have

2 balls and 2 jars, putting ball A in jar A and ball B in jar B does not count as a di�erent way to

organize the balls from putting ball B in jar A and ball A in jar B (because you cannot tell the balls

apart). Furthermore, the jars are indistinguishable; so, putting both balls in jar A and none in jar B

is not distinguishable from putting both balls in jar B and none in jar A (because you cannot tell the

jars apart, either). So, with n = 2, k = 2, there would only be two possible ways to arrange the balls:

both in one jar or one in each jar.

12



This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.

13



This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.

14


