
Finding Some Middle Ground

September 10, 2016

You are designing a median-�nding data structure that has two operations: Insert(M,x) inserts the
number x into median data structure M , and FindMedian(M) produces the median of the numbers
inserted so far into median data structure M (with a precondition that M is non-empty).

We describe each operation's performance in terms of the size of M (i.e., the number of insert oper-
ations so far), which we call n. The median of an odd number of elements is well-de�ned. For an even
number of elements, we take the smaller of the two middle elements to be the median.

Consider the following approach using binary heaps (min- and max-heaps, both stored in resizable
arrays). Heaps support four operations: Size, FindMin (or FindMax as appropriate), DeleteMin (or
DeleteMax as appropriate), and Insert (distinct from the median data structure's Insert).

IMPLEMENTATION APPROACH: The median data structure implementation contains two
�elds Left and Right. Left is initialized to an empty binary max-heap and contains the left (smaller)
half of the elements seen so far. Right is initialized to an empty binary min-heap and contains the right
(larger) half of the elements seen so far. The data structure supports two procedures Insert and Find-

Median:

procedure Insert(medianDS, x)
if Size(medianDS.Left) = 0 or x ≤ FindMax(medianDS.Left) then

Insert(medianDS.Left, x)
else

Insert(medianDS.Right, x)
end if

if Size(medianDS.Left) > Size(medianDS.Right) then
t← FindMax(medianDS.Left)
DeleteMax(medianDS.Left)
Insert(medianDS.Right, t)

else if Size(medianDS.Right) > Size(medianDS.Left) then
t← FindMin(medianDS.Right)
DeleteMin(medianDS.Right)
Insert(medianDS.Left, t)

end if

end procedure

procedure FindMedian(medianDS, x)
return FindMax(medianDS.Left)

end procedure

1 Bug in the Implementation

The data structure's implementation has a small bug.

1. Give the shortest possible sequence of Insert and/or FindMedian commands that illustrates the
bug. (Substantial partial credit is available for �almost-shortest� answers.)

1



2. Indicate what the implementation above does and also what should happen for your commands.

3. Fix the bug in the code above.

2 Asymptotic Bounds

Give and brie�y justify asymptotic bounds on the worst-case runtime performance of a single call to each
of the data structure's two operations in terms of n for the corrected code (or, if you don't see the bug, for
the existing code, assuming it runs �ne).

1. FindMedian:

2. Insert:

3 An Alternate Approach

Give an alternate approach that does not use heaps and is correct. It may use any common data structures
you like and be as (in)e�cient as you like but should be clear and correct. Use comments to highlight the
key insights and invariants in your data structure that show why it is correct. (1 Bonus Point for a good
approach, 2 Bonus Points for the best one; purely subjective marker opinion!)

2


	Bug in the Implementation
	Asymptotic Bounds
	An Alternate Approach

