
CPSC 320 2016W1: Assignment 2

September 25, 2016

Submit this assignment via handin (see the syllabus for more information) to the target assn2 by
the deadline Thursday 6 Oct at 10PM (note the change in time, thanks to your TAs' suggestions).
For credit, your group must make a single submission via one group member's account. Your group's
submission must: must be a clearly legible

� Be on time.

� Consist of a single, clearly legible PDF �le named solution.pdf with clearly indicated solutions to
the problems. (Directly produced via LATEX, Word, Google Docs, or other editing software is best.
Scanned is �ne. High-quality photographs are OK if we agree they're legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quiz postings). Put these in order, ideally. If not, very clearly and prominently
indicate which problem is answered where!

� Include at the start of the document the names and ugrad.cs.ubc.ca account IDs of each member of
your team.

� Include at the start of the document the statement: �All group members have read and followed the
guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with anyone
outside my group, (1) I and my collaborators took no record but names away, and (2) after a suitable
break, my group created the assignment I am submitting without help from anyone other than the
course sta�.� (Go read those guidelines!)

� Include at the start of the document acknowledgment of collaborators and references (with the ex-
ceptions listed in the conduct guidelines).

1 Olympic Scheduling

You are in charge of a live-streaming YouTube channel for the Olympics that promises never to interrupt
an event. (So, once you start playing an event, you must play only that event from the time it starts
to the time it �nishes.) You have a list of the events, where each event includes its: start time, �nish

time (which must be after its start time), and expected audience value. Your goal is to make a

schedule to broadcast the most valuable complete events. The best schedule is the one with
the highest-valued event; in case of ties, compare second-highest valued events, and so on.
(So, for example, you obviously will include the single highest-valued event in the Olympics�presumably
the hockey gold medal game�no matter what else it blocks you from showing.)

(Times when you're not broadcasting events will be �lled with �human interest stories� that have zero
value; so, they're irrelevant.)

ASSUME: all event values are distinct and all event times are distinct. I.e., for any two
values vi and vj with i 6= j, vi 6= vj . The same holds for start and end times (e.g., for any two start times
si and sj with i 6= j, si 6= sj). Further, for any two start and �nish times si and fj , whether i = j or not,
si 6= fj .

1

http://blogs.ubc.ca/cpsc320/syllabus/#assignments
http://blogs.ubc.ca/cpsc320/syllabus/#conduct

1.1 Naïve Algorithm

Consider the following algorithm. Assume that deleting an event from a list of events takes constant time.

Naive(E):

result = new empty list of events

while E is not empty:

bestEvent = E[0]

for each e in E:

if value(e) > value(bestEvent):

bestEvent = e

delete bestEvent from E

for each e in E:

if start(e) < finish(bestEvent) and finish(e) > start(bestEvent):

delete e from E

add bestEvent to result

return result

1.1.1 Finiteness

Brie�y sketch a proof that the while loop in the algorithm above terminates. You need not give a formal
proof, but you should include all key insights in the proof.

1.1.2 E�ciency

Give and brie�y justify a good asymptotic bound on the runtime of the algorithm.

1.1.3 Correctness

Brie�y sketch a proof that the algorithm is correct. You need not give a formal proof, but you should
include all key insights in the proof.

1.2 Reduction on Simpli�ed Problem

To make the Olympic Broadcasting problem simpler, we completely remove start time and �nish times
from the problem. So, now events only have values (not times), and a �schedule� is just a set of selected
events. To make it slightly harder again, you are not allowed to select two events i and j if their values are
within 10 units of each other: |vi − vj | ≤ 10.

Give a correct reduction from this simpli�ed Olympic Broadcasting problem to the sorting problem
(where you provide both a list of items and a function to compare two items). Your reduction should take
O(n lg n) time.

NOTE: You will likely �nd that (a) you can solve this with a single call to the sorting problem's
solution algorithm and (b) producing the sorting instance is the easier part and transforming the solution
to sorting into a solution to this simpli�ed Olympic Broadcasting problem is the harder part. Don't forget
to do both!

1.3 Olympic Reduction, BONUS ONLY

This was signi�cantly harder than we intended it to be! So, we removed it from the quiz/assignment. It's
a bonus problem worth two CPSC 320 bonus points for extremely clear, correct, and e�cient responses.
(Extremely clear reductions that take O(n) time�not counting an O(1) number of calls to a sorting
algorithm�may receive 3 bonus points, but we don't know if such reductions are possible.)

2

Give a correct and e�cient reduction from the Olympic broadcasting problem to the sorting problem
(where you provide both a list of items and a function to compare two items). Your reduction�combined
with an O(n lg n) sorting algorithm�should be asymptotically more e�cient than the naïve algorithm
above.

1.3.1 Correctness

Brie�y sketch a proof that your algorithm is correct. You need not give a formal proof, but you should
include all key insights in the proof.

1.3.2 E�ciency

Give and brie�y justify a good asymptotic bound on the runtime of just your reduction, not including
the call to the sorting algorithm. So, for the purposes of this asymptotic bound, you can imagine that we
somehow solve sorting in constant time. (Note: it's possible to give a reduction that takes O(n) time.)

2 Exhausted of Marriage

We modify SMP with the very reasonable change that not every woman need list every man in her pref-
erences. She prefers to be unmarried to marrying unlisted men. Note that she clearly prefers any man on
her preference list to any man not on her preference list. Men can similarly truncate their lists of women.

Here is the Gale-Shapley algorithm:

1: procedure Stable-Marriage(M , W)
2: initialize all men in M and women in W to unengaged
3: while an unengaged man with at least one woman on his preference list remains do
4: choose such a man m ∈M
5: propose to the next woman w ∈W on his preference list
6: if w is unengaged then
7: engage m to w
8: else if w prefers m to her �ancé m′ then
9: break engagement of m′ to w

10: engage m to w
11: end if

12: cross w o� m's preference list
13: end while

14: report the set of engaged pairs as the �nal matching
15: end procedure

With one small change, we can apply this algorithm and ensure that the (not necessarily perfect) matching
produced never marries a person to someone they left o� of their preference list.

1. Make the small change necessary to the algorithm above.

2. Brie�y sketch the key elements of a proof that the algorithm terminates.

3. We need a new de�nition of instability now that some people may end up unmarried. Here is one
new type of instability that we call an elopement instability : mi and wj are both unmarried but list
each other on their preference lists (in which case they have incentive to break the imposed matching
and marry each other).

Describe another new type of instability involving an unmarried woman. (Note: an analogous insta-
bility exists involving an unmarried man.)

3

4. Brie�y sketch the key elements of a proof that your modi�ed G-S algorithm cannot generate an
elopement instability.

2.1 Even More Exhausted

Brie�y sketch the key elements of a proof that your modi�ed G-S algorithm cannot generate any of the other
three types of instability (the classic SMP instability, the instability you de�ned above, and the analogous
instability with the roles of men and women swapped).

3 Footblog

The massive social network Footblog tracks relationships based on whether two people have �enemied� each
other. (�Enemyship� is a mutual agreement, meaning that a person is not allowed to �enemy� another
person unless the other person agrees to �enemy� them back. No one can �enemy� themselves.)

3.1 Isolationism

We investigate whether Footblog's network is a single connected component.
Footblog's founder created the �rst Footblog account, and that account has no �sponsor� (and cannot

be assigned one). Every other account must have a single, designated �sponsor� who they have �enemied�.
If a sponsors b, we call b the sponsee of a.

There are then four major actions to consider on Footblog, some of which involve others as steps:

Joining When a new Footblog member joins, they must do so by choosing as sponsor (and �enemying�)
someone already in the network who agrees to be their sponsor (and their enemy). After members
join, they're free to �enemy� and �unenemy� anyone except their sponsor and their sponsees.

Enemying Already described above. Remember that when one person �enemies� another, the other must
agree to �enemy� that person back.

Un-Enemying Unlike making an �enemy� link, one person alone can �unenemy� another person, in which
case neither �enemies� the other any more.

Change Sponsor If a person wishes to change their sponsor, they must �unenemy� their sponsor and
simultaneously �enemy� a new sponsor. The new sponsor must agree to act as sponsor and enemy
and must be a new enemy (i.e., must not already be the person's enemy). Note that while a
sponsee can choose to change their sponsor, a sponsor cannot choose to change their sponsee.

You may assume these actions never happen in parallel, i.e., a de�ned sequence occurs of the operations:
joining, enemying, un-enemying, and changing sponsors.

1. Based on these rules, sketch a brief proof that when a person changes their sponsor, their new sponsor
cannot also be one of their sponsees.

2. Based on these rules, either sketch the key points in a proof that Footblog's enemy graph

forms a single connected component or give a small sequence of actions that creates

multiple components.

Circle one: SINGLE ONLY MAY BE MULTIPLE

Provide your proof sketch or example:

4

3.2 Centrality

Footblog has de�ned a notion of �centrality� for its users: a user's �centrality� is the minimum number of
people they'd need to go through to get a message to the person farthest from them on the network, following
�enemy� links. (The �farthest� person is exactly the one to whom there is the longest minimum-length path
of enemies.)

For this problem, assume that the Footblog network does indeed form a single connected

component.

Brie�y describe an algorithm to compute the centrality of a user given a graph G represented as a
number of users n > 0 (where the users themselves are vertices named {v1, v2, . . . , vn}, a vertex number
i (where 1 ≤ i ≤ n) of the user whose centrality we wish to compute, and an adjacency list A of edges
(i.e., an array of linked lists, where the entries in the list A[j] are the vertex numbers of the users j has
�enemied�). You may use any common data structures you need. Your algorithm must run in linear

(i.e., O(n+m) for n nodes and m edges) time.

Centrality(n, i, A):

// Fill in your algorithm here!

4 Heaps of Fun Might Be OK

You're managing a major online tournament of the hot new game Flappy Squirrel. There are a huge
number of users, each with a competitiveness rating (a �oating point number). You need an algorithm
that�given a desired number of competitors c and a list of these competitiveness ratings (an array A of
length n)�returns a list of the c highest ratings. You're guaranteed that c ≤ n. (Note: we use 1-based
indexing on arrays.)

4.1 Algorithm 1

Give and brie�y justify a good asymptotic upper-bound (i.e., big-O bound) on the runtime of the following
algorithm to solve this problem. (Note: the buildMaxHeap operation returns a max-heap built from the
elements of a given array of length n in O(n) time.)

TopC(A, c):

best <- empty list

h <- buildMaxHeap(A)

for i = 1 to c:

add findMax(h) to best

deleteMax(h)

return best

4.2 Algorithm 2

Give and brie�y justify a good asymptotic upper-bound (i.e., big-O bound) on the runtime of the following
algorithm to solve this problem. (Note: the notation A[1..c] produces a list of the elements A[1], A[2],

A[3], ..., A[c] in O(c) time.)

TopC(A, c):

for i = 1 to c:

maxIndex = i

for j = i+1 to n:

if A[j] > A[maxIndex]:

maxIndex = j

5

max = A[maxIndex]

A[maxIndex] = A[i]

A[i] = max

return A[1..c]

4.3 Algorithm 3

Give and brie�y justify a good asymptotic upper-bound (i.e., big-O bound) on the runtime of the following
algorithm to solve this problem.

TopC(A, c):

sort A using an efficient, comparison-based sorting algorithm

return A[1..c]

4.4 Algorithm 4

Give and brie�y justify a good asymptotic upper-bound (i.e., big-O bound) on the runtime of the following
algorithm to solve this problem. (Note: Elements(h) produces all elements in the heap h in constant time,
but h can no longer be used after that point.)

TopC(A, c):

h <- empty min-heap

for i = 1 to n:

if Size(h) < c:

Insert(h, A[i])

else if A[i] > FindMin(h):

DeleteMin(h)

Insert(h, A[i])

return Elements(h)

6

	Olympic Scheduling
	Naïve Algorithm
	Finiteness
	Efficiency
	Correctness

	Reduction on Simplified Problem
	Olympic Reduction, BONUS ONLY
	Correctness
	Efficiency

	Exhausted of Marriage
	Even More Exhausted

	Footblog
	Isolationism
	Centrality

	Heaps of Fun Might Be OK
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Algorithm 4

