
CPSC 320 Notes: Memoization and Dynamic Programming, Part 1

October 21, 2016

You work for the First CitiWide Bank, a bank that makes change. That's just what you do.

1 Greedy Change

Assuming an unlimited supply of quarters (25 cents), dimes (10 cents), nickels (5 cents), and pennies (1

cent, once upon a time), give a greedy algorithm to make change for n ≥ 0 cents using the smallest total

number of coins. Prove your algorithm correct.

Remember to:

� Create trivial and small examples

� Represent the problem

� Represent the solution

� Think about similar problems

� Think about brute force

� Think about a lower-bound on the problem

� Try a promising approach (greedy!)

� Challenge your approach

1

http://snltranscripts.jt.org/88/88achangebank1.phtml


2 Brother, I Can't Spare a Nickel

A few years back, the Canadian government eliminated the penny. Imagine the Canadian government

accidentally eliminated the nickel rather than the penny. (That is, assume you have an unlimited supply

of quarters, dimes, and pennies, but no nickels.)

1. Adapt your greedy algorithm to this problem and then challenge your approach by designing and

testing at least 2 examples that probe its weaknesses.

2. We can solve this problem with something like a divide-and-conquer algorithm. (That is, using a

recursive approach.)

(a) To make the change, you must start by handing the customer some coin. What are your options?

(b) Imagine that in order to make 81 cents of change using the fewest coins possible, you have to

start by handing the customer a quarter. Clearly describe the problem you are left with (but

don't solve it). It may help to give names to quantities and concepts in the problem if you

haven't already!

(c) Write down descriptions of the subproblems for each of your other ��rst coin� options (besides a

quarter).

(d) Given an optimal solution to each subproblem, how will you tell which coin to choose �rst?

2



3. It's hard to describe a recursive algorithm without naming it. We'll name the algorithm CCC(n) (for
CountCoinsChange(n)). CCC(n) returns the minimum number of coins required to make n cents
of change using only pennies, dimes, and quarters. Finish CCC's implementation below:

CCC(n):

If n < 0:

Return infinity

Else, If n = 0:

Return _______________

Else, n > 0:

Return the _______________ of these possibilities:

_________________________________________

_________________________________________

_________________________________________

4. CCC does not actually return an optimal solution (the change to give), only the number of coins in

an optimal solution. If we imagine allowing CCC to have two return values (e.g., returning a more

complex object than an integer), it can also return the solution. Describe how.

5. Finish this recurrence for the runtime of CCC:

T(n) = 1 for n ________

T(n) = ____________________________ otherwise

3



6. Give a depressing Ω-bound on the runtime of CCC by following these steps:

(a) T (n) is hard to deal with because it has very di�erent-looking recursive terms. To lower-bound

it, we can make them all look the same as long as the resulting function gets smaller or

stays the same. Now, try to �ll in the lower-bound on T (n) below so the recursive terms all

match:

For the recursive case, T (n) ≤

(b) Now, draw a recurrence tree for T (n) and �gure out its number of levels, work per level, and

total work.

7. Why is the performance so bad? (Hint: What subproblem do you get to if you try to give change

with �ve dimes?)

4


	Greedy Change
	Brother, I Can't Spare a Nickel

