
CPSC 320 Notes: What's in a Reduction? Solution-ish stu�

November 14, 2016

1 Boolean Satis�ability

1. Here's the example in our speci�ed format:

5 // 5 clauses

4 1 -2 3 4 // a clause with 4 literals: x1, not x2, x3, or x4

1 5 // a clause with 1 literal: x5

1 -1

3 2 -3 -5

2 -2 3

2. Yes, this is satis�able. Solving it by hand: we need x5 = T and x1 = F . Once x5 is true, then the

last two clauses indicate that x2 and x3 have to have the same truth values. Assigning both true or

both false will also handle the �rst clause. So, for example: x1 = F, x2 = T, x3 = T, x4 = T, x5 = T
is a truth assignment that satis�es the clause.

3. We'll leave this to you, but the footnote takes you a long way towards an answer. :)

4. Again, we leave this to you.

5. Given an assignment of truth values to the variables in an instance, we could use the algorithm below.

The �rst step takes time proportional to the number of variables in the problem instance, and the

number of variables is at most linear in the length of the instance (since each variable has to be

mentioned in the input!). The following loop takes constant time per element of the input (at worst)

and so linear time in the length of the input. Overall, then, the algorithm takes time polynomial

(indeed, linear) in the length of the input, even in the worst case.

(a) Build an array T [1 . . . n] such that T [i] is true if and only if variable xi is true.

(b) For each clause:

i. For each literal in the clause:

A. If the literal is of the form −i and T [i] is false, skip to the next clause.

B. If the literal is of the form i and T [i] is true, skip to the next clause.

ii. If we reach this point (i.e., none of the literals in this clause are true), terminate immediately

indicating that the assignment does not satisfy the expression.

(c) If we reach this point (i.e., each clause has at least one true literal), terminate indicating the

assignment does satisfy the expression.

6. Brute force would need to try 2n di�erent truth assignments in the worst case. (Note that trying one

truth assignment may take more than constant time; so, the brute force algorithm may actually take

ω(2n) time to run!)

1



2 3-SAT and SAT

1. You could transform (x5) into (x5 ∨ x5 ∨ x5). If you couldn't repeat variables, you could introduce

two new variables and make four clauses like (x5 ∨ a ∨ b), putting the two new variables in all four

combinations of TT, TF, FT, FF and therefore forcing x5 to be true. (Note that if you had many

one-variable clauses to transform, you could reuse a and b to the same e�ect many times rather than

needing new variables each time. Also note that we could use this to force a variable�say t�to

necessarily be true and similarly force another variable�say f�to necessarily be false. That's handy

because once we've done that, we can �or� t onto any short clauses to pad them out, all for the cost

of a constant number of extra variables and clauses to set t up.)

2. You can transform (x1 ∨ x2 ∨ x3 ∨ x4) into (x1 ∨ x2 ∨ xn+1) ∧ (xn+1 ∨ x3 ∨ x4). Notice that because
the new variable xn+1 must be either true or false, then either at least one of the �rst two terms in

the original clause must be true or at least one of the last two literals in the original clause must be

true. Overall then, at least one of the literals in the original clause must be true, as we wanted!

One way to think of this is to transform the two clauses into conditionals headed by xn+1. Then, one

of the clauses is �if xn+1 is true, then. . . � and the other is �if xn+1 is false, then. . . �. Between them,

they insist that one or the other of the split pieces of the clause must still be true.

3. You can use a function like this to transform any clause (list of literals l1, l2, . . . , lk) of length k ≥ 3
into a list of clauses of length 3:

// Precondition: k >= 3

FIX(l1, l2, ..., lk):

If k = 3:

Output the clause l1, l2, l3

Else (k > 3):

Let x be the index of a so far unused variable

Output the clause l1, l2, x

FIX(-x, l3, l4, ..., lk)

First, note that we could preprocess the input in linear time to �nd the �rst unused index of a variable

and then in constant time get a new unused index if we wanted. So, that operation takes polynomial

time.

Second, notice that the �else� part of this function ensures the same guarantee as above. That is, if

FIX(l1, l2, ..., lk) for some k ensures that at least one of l1, l2, ..., lk must be true any

satisfying assignment, then FIX(l1, l2, ..., lk, lk+1) ensures one of l1, l2, ..., lk, lk+1

must be true in any satisfying assignment (by the same argument as above).

Overall, this function takes linear time in k, since it reduces k by one on each recursive call and stops

when k = 3.

4. Our whole reduction is the following. (Note that I'd write the easier algorithm 2 before trying

algorithm 1. Note also that I ignore the slightly tricky case where a clause has no literals.)

Algorithm 1: Given an instance of SAT, generate an instance of 3-SAT

as follows:

For each clause in the SAT problem:

If the clause has 1 literal l1: Output (l1, l1, l1)

Else if the clause has 2 literals l1, l2: Output (l1, l2, l2)

2



Else the clause has literals l1, l2, ..., lk:

Call FIX(l1, l2, ..., lk)

Algorithm 2: Given a solution to the 3-SAT instance (YES or NO),

output the same answer as the solution to the SAT instance.

Since there is a polynomial number of clauses (indeed, linear in the length of the input) and each

clause takes polynomial time (as described above), the reduction takes polynomial time.

We can also prove the reduction correct. (Indeed, we've already made arguments about the pieces of

the reduction above.) We do this in two steps.

First, assume the answer to the 3-SAT instance is YES. In that case, there is an assignment of truth

values to the variables in the 3-SAT problem such that each clause has at least one true literal. We

need to show that the answer to the SAT instance is YES.

Let each variable in the SAT instance take on its truth value in the solution to the 3-SAT instance.

Any 3-SAT clause generated from a SAT clause with 3 or fewer variables must have at least one literal

that appeared in the original SAT clause that is true. So, all the SAT clauses with 3 or fewer

variables have a true literal under this assignment.

What about the SAT clauses with 4 or more variables? Let's prove by contradiction that every such

clause has at least one true literal. Imagine that one such had no true literal. Then, the only literals

that can be true in the corresponding 3-SAT clauses are the �extra� variables introduced by FIX. In

that case, the �rst of those variables needs to be true, since it appears positively with two �original�

literals in the �rst recursive call to FIX. That means it appears negated in the next recursive call,

which forces the next such variable to be true. That argument continues inductively, forcing all

introduced variables to be true, but in the base case, the only introduced variable appears negatively,

which leaves one clause with no true literals. But, the 3-SAT solution made at least one literal true

in every 3-SAT clause; so, this is a contradiction. Thus, every SAT clause with 4 or more literals has

at least one true literal.

That concludes our argument: If 3-SAT's answer is YES, then SAT's answer is YES.

Going the other way: Assume that there is a solution to the SAT instance, then there's an assignment

of truth values to the SAT variables such that every clause has at least one true literal. Let the

variables in the 3-SAT instance that are also in the SAT instance take on their values from the SAT

solution. That means every 3-SAT clause generated from a SAT clause of length at most 3 has at

least one true literal. For 3-SAT clauses generated from longer SAT clauses (via FIX), at least one of

the generated clauses has a true literal. If that's not the last clause generated in the recursion in FIX,

then it includes a new, introduced variable. We don't need to set that to true; so, we can set it to false

and make the next generated clause true, which allows us inductively to make all subsequent clauses

generated in the recursion true. Conversely, if this is not the �rst clause generated in the recursion,

it starts with the negation of an introduced variable. We can make that variable true, since we don't

need that literal to be true, which makes the clause before this one true, and allows us to continue

making clauses true inductively back to the start of the recursion.

Thus, if the SAT instance's answer is YES, so is the 3-SAT instance's answer.

That proves our reduction correct. Since SAT is NP-hard, then 3-SAT is as well. Since 3-SAT is also

in NP, then 3-SAT is NP-complete.

3 What does a reduction tell us?

1. IMAGINARY SCENARIO #1: Say our reduction's two algorithms take O(f(n)) time and we

have a solution to the underlying problem problem that also takes O(f(n)) time. What do we know

3



about the original problem?

In this scenario, the reduction and the solution to the underlying problem together yield an O(f(n))
solution to the original problem. (This is how we'd normally use reductions in practice!)

2. IMAGINARY SCENARIO #2: Say our reduction's two algorithms take O(g(n)) time and we

know that there is no solution to the original problem that runs in O(g(n)) time. What do we know

about the underlying problem? Why?

In this situation, there canot be an O(g(n)) solution to the underlying problem. Why not? Well, say

there were, then as in the previous part, we could use that to generate an O(g(n)) solution to the

original problem, but we said no such solution exists.

If we assume P 6= NP, this is how we use reductions in an NP-completeness proof. (Although our use

is technically more similar to what we do in the next part!)

3. NOT-SO-IMAGINARY SCENARIO #3: Say that we know (which we do) that if SAT can

be solved in polynomial time, then any problem in the large set called �NP� can also be solved in

polynomial time. What does our redution from SAT to 3-SAT tell us? Why?

It tells us that if 3-SAT can be solved in polynomial time, then so too can any problem in NP be

solved in polynomial time.

4 What does NP-completeness tell us?

1. List as many ways as you can think of to �get around� an NP-complete problem.

We'll likely discuss things like: solving only �small� cases being sometimes good enough, solving

(scalable) special cases quickly, approximating the optimal solution (for non-decision problems), and

altering the problem to something similar that isn't NP-complete.

2. Left as an exercise :)

3. A huge number of problems are solved using SAT solvers because �SAT is an easy target for reduc-

tions�. That's because SAT is a very expressive �language�. It turns out to be quite natural to encode

other problems as logic problems, and we can solve logic problems using SAT!

5 Challenge

Left to you!

4


	Boolean Satisfiability
	3-SAT and SAT
	What does a reduction tell us?
	What does NP-completeness tell us?
	Challenge

