
CPSC 320 Midterm #1 Sample Solution

February 4, 2015

1 A Capital Idea [11 marks]

1. In each row below, circle the correct statement if we know that for all positive integers n, f(n) < g(n).
[8 marks]

SOLUTION: We can easily prove f(n) ∈ O(g(n)) by setting our c = 1 and our n0 = 1.

If f(n) = 1 and g(n) = n + 1, then f(n) < g(n) for positive n, but f(n) 6∈ Ω(g(n)). However, if
f(n) = 1 and g(n) = 2, then we also have f(n) < g(n), but f(n) ∈ Ω(g(n)). So, we don't know
about Ω (and unless we knew O was false, we also wouldn't know about Θ).

We don't know about o either. The Ω examples establish that. (In the �rst example, f(n) ∈ o(g(n)),
but in the second example, that's not true.)

We do know about ω. It cannot be the case for all constants c that f(n) > c · g(n) for su�ciently
large n because it's not true for c = 1. So, f(n) 6∈ ω(g(n)).

2. Consider the following pseudocode:

Given an array A with length n:

Let TestCount = 0

For each index i from 1 to the length of A:

For each index j from 1 to the length of A:

If UnknownTest(A, A[i], A[j]) returns true:

Increment TestCount

Halt and return TestCount

If you're given no further information about UnknownTest, what can you say about the asymptotic
worst-case runtime of this function? Brie�y justify your answer. [3 marks]

SOLUTION: The outer loop runs exactly n times. The inner loop runs exactly n times. That
means the inner loop's body is executed n2 times. We don't know how long it takes to execute
(maybe UnknownTest is really slow asymptotically?), but it has to take at least constant time just for
loop maintenance, handling the if, calling the UnknownTest function, etc.

So, we can only give a lower-bound (i.e., an Ω bound). Since all the other steps besides the loop take
constant time, that bound is Ω(n2).

Note: just annotating the loops, saying Ω(n2) and saying �because UnknownTest may take more than
constant time� would have been plenty.

1



2 Demi-Glace [15 marks]

The minimum spanning tree problem becomes somewhat strange in the presence of negative edge weights.
Imagine, for example, that you are a telecommunications company creating a communications network by
connecting particular cities with �ber-optic cable. You want to ensure that all cities are connected by some
path (i.e., that you've created a spanning tree). There is a cost to laying the cable, but some pairs of cities
are also willing to pay you to do the job; so, the net cost of a particular connection may be positive, zero,
or even negative.

1. An apparently unrelated problem: We have a graph G with 25 nodes and 150 edges. We compute
a spanning tree T of G with total cost 100 on its edges. We then add 2 to the cost of every edge in
G. Explain why the new cost of T is 148. Hint: Draw a small example to gain insight! [3 marks]

SOLUTION: Every tree in a graph with |V | nodes has exactly |V | − 1 edges; so, T does as well.

We increased each edge's cost by 2; so, we increased T 's overall cost by 2 ∗ (|V | − 1).

2. Back to the problem above: Assuming that you insist on producing a �ber-optic network representing
a minimum spanning tree, give a reduction from this problem to the problem of computing a minimum
spanning tree over a graph with strictly positive edge weights. [6 marks]

Remember: a reduction is two algorithms, not just one. Hint: the previous problem is not unrelated.

SOLUTION: To reduce an instance of the any-weight problem to the positive-weight problem, we
�nd the weight −e of the lowest-weight edge and add e + 1 to all edges' weights. (At that point, the
lowest-weight edge has weight −e + e + 1 = 1, and all other edges have higher weight.)

To �restore� a solution from the positive-weight problem to the any-weight problem, we just give back
the same edges. (If we need to ��x� the weights, we just subtract e + 1 from each one.)

We cut this problem from the exam, but only for time balance and because we didn't want too
many interdependent problems, not because it was a bad problem: Find a bound on the worst-case
performance of your reduction (not including the time to solve the underlying problem) in terms of
|V | and |E|. That's a good problem to solve!

3. Finish this proof that your reduction�paired with an optimal solution to the positive edge weights
MST problem�produces a minimum spanning tree. (Note: you may assume that your reduction
produces a spanning tree, just not necessarily a minimum spanning tree.) [6 marks]

Proof: Assume for contradiction that my reduction (paired with the optimal solution to the positive
edge weight MST problem) produces a spanning tree T with cost cT in the original graph but some
other spanning tree U exists with cost cU < cT in the original graph.

Note: You're free to continue as you like from there, but if you want to also use the following, just
circle it: �T 's cost in the graph produced by my reduction is c′T , and U 's cost in the graph produced
by my reduction is c′U . We can compute c′T and c′U as follows. . . �

SOLUTION: We'll use that quote above and continue with:

. . . c′T = cT + (|V | − 1)b and c′U = cU + (|V | − 1)b, where b is the constant we added to each edge's
weight. That's because each tree has exactly |V | − 1 edges; so, adding b to all edges' weights adds
exactly (|V | − 1)b to the trees' costs.

We know T is optimal in the new graph. So, c′T ≤ c′U . But then c′T − (|V | − 1)b ≤ c′U − (|V | − 1)b
(subtracting the same quantity from both sides), and so cT ≤ cU . That contradicts cU < cT .

QED

2



3 Greedy (Yet Plausible) Deniability [18 marks]

You're solving the interval scheduling problem except minimizing the number of jobs performed rather
than maximizing it. In particular, we de�ne a con�ict set to be the set of all jobs that con�ict with a
particular job. Your solution should minimize the number of jobs performed while still performing exactly
one job from each con�ict set.

UNECESSARY FLAVOR TEXT: Your boss has just given you a list of jobs to perform. Each job
has a start time and an end time. You can never do more than one job at a time. You're kind of tired; so,
you'd like to do as few jobs as possible, but you can't just do nothing or you'll get �red. So, you want to
�nd a list of the smallest number of jobs you can do so that every other job con�icts with (has times that
overlap) at least one of the jobs you are doing.

1. Here is a greedy strategy that does not always choose the smallest number of jobs: (1) Sort the jobs
in order by increasing start time. (2) Repeat until there are no jobs left: choose to do the �rst job
left and then cross out it and all jobs with which it con�icts.

Now, explain which jobs are in the con�ict set of the job j with the �rst start time and where those
jobs appear in the array that is sorted by start time. [2 marks]

SOLUTION: The con�icting jobs are all those with start time ≤ j's �nish time (and start time ≥
j's start time, but since j is �rst, that's every job). Since the jobs are sorted by start time, all of
those jobs are at the start of the array.

We initially developed this problem thinking that this led to a greedy solution, but oops, it doesn't.
However, the fact that those jobs are at the start of the array does make the implied solution nice
and e�cient :).

2. Draw an example with four jobs that shows that this broken greedy strategy can succeed. Indicate
what the strategy selects. [1 mark]

SOLUTION: I am but a novice at drawing in LATEX. So, I'll just say that this is a pretty trivial
problem. For example, if all four jobs con�ict, this algorithm wins (picks one). If none of the four
jobs con�icts (i.e., they're one after the other), this algorithm also wins (picks all four).

3. Draw an example with four jobs that shows that this broken greedy strategy can fail. Indicate (1)
what the strategy selects and (2) what the optimal solution is. [2 marks]

SOLUTION: See above. Only three jobs are really necessary to illustrate the problem. Have the
�rst job con�ict with the second but not the third. Have the second job con�ict with both the �rst
and third. (So, draw the second job spanning from before the end of the �rst to after the start of
the third.) Then, this algorithm picks the �rst, crosses o� the second, and picks the third, but the
optimal solution picks only the second.

We need a fourth job to be responsive to the problem. To keep things simple, we'll have it start after
all the other jobs �nish, and both greedy and optimal must pick it.

4. Someone proposes a new greedy algorithm. They have already proven: �For any problem instance,
an arbitrary optimal solution O must include at least one job c in common with the solution G
created by their greedy algorithm.�

Here is a theorem that might be part of their proof of correctness: �Consider a new problem instance
that is the same as the original one except that it excludes everything in c's con�ict set. We now
show that O with c removed (i.e., O − {c}) is an optimal solution to this new problem instance.�

Finish these steps on the way to proving this theorem:

(a) First, we show that O − {c} does not include two con�icting jobs. We know O itself does not
include two con�icting jobs, and. . . [2 marks]

3



SOLUTION: O−{c} has no additional jobs beyond O. So, O−{c} cannot have two con�icting
jobs.

(b) Next, we show that O− {c} includes at least one job from each con�ict set. Assume for contra-
diction that O−{c} does not include a job from the con�ict set of some job in the new instance.
That job also appears in the original instance; so, . . . [5 marks]

SOLUTION: O includes some job from this con�ict set. Since O − {c} doesn't include any
such job, the job must be the only one that di�ers, c. But, we removed all jobs that con�ict with
c from the new instance. So, the job cannot have c in its con�ict set, which is a contradiction.

QED

(c) Finally, we show tht O−{c} is optimal for the new problem instance. Assume for contradiction
that it is not. Then, some other solution O′ exists that uses fewer jobs to solve the new instance,
but. . . [6 marks]

SOLUTION: O′ ∪ {c} must then be a solution to the original instance, since it includes some-
thing in the con�ict set of everything that con�icts with c (i.e., c) as well as something in every
other con�ict set (i.e., the members of O′).

However, |O′ ∪ {c}| = |O′|+ 1 < |O − {c}|+ 1 = |O| and thus O′ ∪ {c} is a better solution than
O, but that contradicts the fact that |O| is optimal.

QED

4 Marriage Counselling [6 marks]

In this problem, we consider the Gale-Shapley algorithm with men proposing. For each statement, circle
one answer to indicate whether the statement is always true, never true, or sometimes true (i.e., true
for some instances but not for others).

Note: in some cases we restrict attention to just certain types of instances, in which case we're asking
whether the statement is always, never, or sometimes true for instances of that type.

WARNING: one version of the exam asked slightly di�erent questions below.

1. The last proposal made is to a woman who was previously engaged.

SOLUTION: This must be false. The last proposal ends the loop. Thus, the proposal must be
accepted (else the man would still be free and the loop would continue), and the woman cannot
accept it and �dump� a former �ancé (else that �ancé would be free, and the loop would continue).
So, the woman was not previously engaged. (Note, the fact that she wasn't engaged at that moment
does indeed indicate that she was never previously engaged, since women in the algorithm have no
mechanism to become free after becoming engaged.)

2. Each man makes only one proposal.

SOLUTION: This can be true. Consider the trivial example where there's one man and one woman.
It can also be false, consider a case with two men and women. Both men prefer the same women
w1, but only one can marry her. The other must propose to w1 (and be rejected or later have the
engagement broken) before proposing to w2.

3. For any instance in which two women w1 and w2 both most prefer one man m, the one that m prefers
less of these women does not marry m.

SOLUTION: This is always true. Assume for contradiction that it were false. Then, m marries
w2, but m prefers w1 to w2, and since w1 most prefers m, she prefers m to whomever she may have
married. That's an instability, but the algorithm generates a stable solution. QED

4



5 Pairs of Apples and Oranges [10 marks]

For each of the following, indicate the most restrictive true answer of f(n) ∈ O(g(n)), f(n) ∈ Θ(g(n)), and
f(n) ∈ Ω(g(n)). NOTE: there are only three options here (only the �big� bounds, not the �little� ones).

SOLUTION: Inline below..

lgn
logn ∈ Θ ( 21000 )

n3 − 2n2 + 7 ∈ Ω ( 5n2 + 53 )

n2

lgn ∈ Ω ( n lg n )

(n!)2 ∈ O ( (2n)! )

(lg 4)n ∈ Ω ( (lg 3)n )

Some brief justi�cations.
For the �rst, lg n is some constant times log n. Thus, their ratio is also a constant, and both sides are

constants.
The second should be clear.
Take the ratio for the third with the left side on top, and you get: n2

(lgn)n(lgn) = n
(lgn)2

. Linear time

dominates any power of a log. You can verify that with derivatives without too much trouble by changing
lg n to lnn to make your life easier! (You'll end up with a new ratio where both top and bottom approach
in�nity. Just take the derivative of the top and of the bottom again.)

For the fourth, if we take the ratio, one of the n!'s cancels and leaves a product of ratios like 2n/n,
(2n − 1)/(n − 1), etc. Each of these is at least 2; so, multiplied together, they're at least 2n, which goes
to in�nity.

For the last, this is just two exponentials with di�erent bases. The one with the smaller base is dominated
by the other.

Note: in these examples, every one that says O is also o and every one that says Ω is also ω.

6 Bonus [Up to 7 Bonus Marks]

Bonus marks add to your exam total and also to your course bonus total. What course bonus points are
worth still isn't clear, however! WARNING: These questions are too hard for their point values. We are
free to mark these questions harshly. Finish the rest of the exam before attempting these questions. Do
not taunt these questions.

1. In the practice exam problems, we found that the independent set of a graph G with n vertices where
the maximum degree of any vertex is dmax is lower-bounded by d n

dmax+1e. Give an algorithm that,
given an n and a dmax, constructs a graph with the given parameters whose largest independent set
has exactly d n

dmax+1e nodes. (I.e., show that this lower-bound is tight.) You must clearly explain

why the graph produced has the appropriate sized independent set. [2 bonus marks]

SOLUTION: All we'll do for the moment is give two strong hints. (1) There's no need for the graph
to be connected. (2) At most one member of a clique can be in an independent set. Don't know what
a clique is? It's a bonus, my friend: http://lmgtfy.com/?q=clique.

2. The minimal interval scheduling problem above suggests the following greedy approach: �Sort the
jobs by start time and repeat until there are no jobs left: Of the jobs that con�ict with the �rst job,
choose the one with the last �nish time and cross out all jobs that con�ict with it.�

5

http://lmgtfy.com/?q=clique


Prove or disprove that this strategy is optimal. [2 bonus marks]

SOLUTION: All we'll do for the moment is to say that the strategy most de�nitely is not always
optimal.

Now, if you have an e�cient, greedy, optimal solution, post about it! Alternatively, if you have a
lower-bound on the complexity of the problem, post about that, too! We're not sure but suspect it
may be NP-complete (whatever that means. . . we haven't studied it yet!).

3. In this problem you'll prove a tight, non-asymptotic upper bound on the number of iterations of the
loop in G-S in terms of the number of men n in the input. (1) Give and prove the upper bound. (2)
Give an algorithm to produce an instance of size n that achieves that bound and show that it does
so, which establishes that the bound is tight. [3 bonus marks]

Note: we will give 1 bonus mark for the �rst part for a tight bound, even if you do not prove that
it's tight (i.e., �nish the second part).

SOLUTION: All we'll do for the moment is give you a strong hint towards the bound: The last
proposal must be to a woman who was previously unengaged. So, she can only ever receive a single
proposal. (Perhaps surprisingly, it is possible to achieve the bound that suggests.)

6


	A Capital Idea [11 marks]
	Demi-Glace [15 marks]
	Greedy (Yet Plausible) Deniability [18 marks]
	Marriage Counselling [6 marks]
	Pairs of Apples and Oranges [10 marks]
	Bonus [Up to 7 Bonus Marks]

