
CPSC 320 2014W2 Midterm #2 Sample Solutions

March 13, 2015

1 Canopticon [8 marks]

Classify each of the following recurrences (assumed to have base cases of T (1) = T (0) = 1) into one of the

three cases of the Master Theorem�the cases in which leaves dominate, in which the root dominates, and

in which the work is balanced across levels�or indicate that the Master Theorem does not apply.

1. T (n) = 2T (dn/4e) + 2n

SOLUTION: a = 2, b = 4, logb a = 0.5, f(n) = 2n. 2n ∈ Ω(nc) for any constant c; so, as long as 2n

meets the regularity condition, this is the root-dominated case. Sure enough, a ·2n/b = 2 ·2n/4 ≤ k ·2n
for n ≥ 2 and k = 1/2 (or a variety of other combinations of n-values and k choices). As a point of

interest, the Master Theorem gives us a runtime of Θ(2n) for this recurrence.

2. T (n) = T (bn/100c) + n2

SOLUTION: a = 1, b = 100, logb a = 0, f(n) = n2. n2 ∈ Ω(n2), and 2 > 0; so this is again the

root-dominated case (and so has a bound of Θ(n2)). We have already seen that the Master Theorem

is usable on n2 in previous problems, but we can recheck. a(n/b)2 = 2(n/4)2 = n2/8 ≤ 1/8
n

2
; so,

k = 1/8 is a natural choice.

3. T (n) = 16T (bn/4c) + n2

SOLUTION: a = 16, b = 4, logb a = 2, f(n) = n2. n2 ∈ Θ(n2); so this is the balanced case. (Thus,

the bound is Θ(n2 lg n).)

4. T (n) = 81T (dn/3e) + n3

SOLUTION: a = 81, b = 3, logb a = 4, f(n) = n3. n3 ∈ O(n3), and 3 < 4; so, this is the leaf -
dominated case. (Thus, the bound is Θ(n4). In case you had trouble with 34 = 81 without a

calculator, note that you could have stopped with 33 = 27 < 81.)
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2 Doctoring the Master Theorem [10 marks]

Answer the questions below about this recurrence:

T (n) =

{
T (bn/2c) + T (b2n/3c) + n

√
n when n > 1

1 when n ≤ 1

Throughout this problem, you may ignore �oors and ceilings.

NOTE: the recurrence and some questions or parts of questions have been changed from
practice version.

1. Draw a recursion tree for this recurrence. Include at least two levels (root and children). Label
your tree with: the problem size (in each node), and the work per node (next to each node). [5
marks]

SOLUTION: Our tree is below. Note that we used n1.5 in place of n
√
n. That makes it easier to

avoid the common mistake of giving, e.g., the work at a node with problem size n/2 as (n/2)
√
n as

opposed to (n/2)
√
n/2.

2. Give the depth of the deepest leaf (ignoring �oors and ceilings). [2 marks]

SOLUTION: The deepest leaf will be under the rightmost (all 2n/3) branch, which goes down by a

factor of only 3/2 at each level. So, we'll reach the leaf when n
(3/2)i

= 1. Solving for i, we get a depth

of log3/2 n.

3. Use the Master Theorem to give a Θ-bound on this related recurrence T2(n) = 2T2(n/2)+n
√
n

(which gives an Ω-bound on T (n)). Clearly indicate a, b, and f(n). [2 marks] SOLUTION:
a = 2, b = 2, logb a = 1, f(n) = n1.5. So, this is the root-dominated case. Does f(n) meet the

regularity condition? 2f(n/2) = 2(n/2)1.5 = n1.5/
√

2 ≤ 1√
2
n1.5. So, yes, f(n) meets the condition

with k = 1√
2
(and many other possible values!).

Thus, the bound is Θ(n
√
n).

4. Use a similar technique to construct a modi�ed recurrence T3(n) from which we could derive an

O-bound on T (n). (DO NOT give a bound on your recurrence.) [1 mark]

SOLUTION: Instead of �lowering the larger term� to match the smaller, we'll �raise the smaller

term� to match the larger: T3(n) = 2T3(2n/3) + n
√
n.
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3 The High Price of Plausible Deniability [11 marks]

You're solving the interval scheduling problem except minimizing the number of jobs performed rather

than maximizing it. In particular, we de�ne the con�ict set of a job to be the set of all jobs that con�ict

with that job's time range. (Note that the con�ict set of a job always includes the job itself.) Your solution

should minimize the number of jobs performed while still performing exactly one job from each con�ict set.

(Note: we consider two jobs' times to con�ict even if the start time of one job is equal to the �nish time

of the other, i.e., they overlap at only one point.)

UNECESSARY FLAVOR TEXT: Your boss has just given you a list of jobs to perform. Each job

has a start time and an end time. You can never do more than one job at a time. You're kind of tired; so,

you'd like to do as few jobs as possible, but you can't just do nothing or you'll get �red. So, you want to

�nd a list of the smallest number of jobs you can do so that every other job con�icts with (has times that

overlap) at least one of the jobs you are doing.

A friend suggests breaking the problem down into two cases: one where we include the �rst job in the

solution and one where we do not include it.
Your friend's algorithm takes array ByStart as input. ByStart is sorted in order of increasing start

time. Each array entry is an object with a start time �eld start and �nish time �eld finish; so,

ByStart[1].start is the �rst job's start time and ByStart[1].finish is its �nish time.

Here is the algorithm:

LazyISP(ByStart):

Return LazyISPHelper(ByStart, 1)

LazyISPHelper(ByStart, i):

If i > length(ByStart):

Return 0

Else:

Let j be the smallest index for which // For part 3 below,

ByStart[j].start > ByStart[i].finish // assume these three

or length(ByStart)+1 if no such index exists // lines take O(1) time

Let v1 be 1 + LazyISPHelper(ByStart, j)

Let v2 be LazyISPHelper(ByStart, i+1)

Return min(v1, v2)

1. Give an instance with no more than 2 jobs that shows that this algorithm is not correct. Indicate
both what the algorithm returns and the correct answer. [1 mark]

SOLUTION: Actually, any non-empty instance will work. The trouble is that once there's at least

one job, we are required to take at least one job. (Why? Well, that one job has a con�ict set, and we

need to take exactly one job from that con�ict set. So, we need at least one job.)

However, the algorithm always lets us choose between including the job and excluding it. In the latter

case, we just solve the subproblem that doesn't include that job. However, the recurrence will let us

do that over and over until we run out of jobs, reach the base case, and get 0 as a result. Then, the

application of min will propagate that 0 to every entry in my table.

Bottom line: if my instance is this job � then the correct solution includes it while this algorithm

excludes it.

This is a good moment to mention, however, that we can get quite good performance on this problem

from a DP solution. (Better than the practice problem approach!) There is a solution that runs in

O(n2) time and O(n) memory (for n jobs) in the worst case.
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2. Give a good Θ-bound on the worst-case runtime of the algorithm if we rewrite it to use dynamic

programming (without trying to �x it). Assume that the three lines beginning at Let j be the

smallest take constant time. [2 marks]

SOLUTION: There are n entries in the table. Each one requires choosing between two options (two

table entry lookups with a small (constant) amount of logic and arithmetic on top). So, that's Θ(n)
work overall.

3. Rewrite LazyISP below to use dynamic programming (without trying to �x it): [8 marks]

SOLUTION: We rewrite it in place, leaving our __answers__ in blanks for clarity:

LazyISP(ByStart):

Let Soln be an array of length __Length(ByStart)__

For i = __Length(ByStart) down to 1__:

Let j be the smallest index for which

ByStart[j].start > ByStart[i].finish

or length(ByStart)+1 if no such index exists

Let v1 be __if (j <= Length(ByStart)) then 1 + Soln[j] else 0__

Let v2 be __if (i+1 <= Length(ByStart)) then Soln[i+1] else 0__

__Soln[i] = min(v1, v2)__

Return __Soln[1]__

// Feel free to write a helper function below if you need one!

Two notes on the solution. First, using a �SolnCheck�-style helper function to wrap array accesses

would eliminate those awkward �inline� if-then-else expressions above. Second, note that as AL-
WAYS, the DP solution just sets up an ordering on the subproblems and then does exactly what

the recursive solution does inside the loop.

MANY people are struggling with trying to invent a whole new algorithm for their DP solution.

That's not how DP works! It's not a new algorithm. It's just a trick to wrap around the original one

and make it more e�cient.
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4 I'm a k, You're O(k) [13 marks]

Suppose that we are given an array A with n distinct elements and a guarantee that no element in A is more

than k − 1 indexes away from the index it belongs at in a sorted array (for some positive integer k ≤ n),
and we want to sort the array.

For example, the array [15, 3, 19, 12, 16, 10, 21, 18] in sorted order is: [3, 10, 12, 15, 16,

18, 19, 21]. 15 is therefore 3 indexes out of place (would be moved 3 places to the right to put it in the

�correct� spot), 3 is only 1 index out of place (would be moved 1 place to the left), and 19 is 4 indexes out

of place. Overall, the smallest k we could provide for this array is 5 (because 5 − 1 = 4, and both 19 and

10 are 4 indexes out of place).

1. Complete this divide-and-conquer algorithm to sort an array of length n given the array A and the

parameter k described above so that it is well-described by the recurrence:

T (n) =

{
2T (n/2) + T (2k + 1) when n > 2k + 1

k lg k when n ≤ 2k + 1

Do NOT assume (as in the previous part) that k ≤ n ≤ 2k + 1. [4 marks]

HINT: Consider an element that belongs in the right half of the sorted array (e.g., something larger

than the median). What is the smallest index at which you could �nd that element in A?

SOLUTION: We rewrite it in place, leaving our __answers__ in blanks for clarity:

BoundedSort(A, k):

BSHelper(A, k, 1, length(A))

BSHelper(A, k, lo, hi):

If hi - lo + 1 <= 2k + 1:

MergeSort the portion of A from lo up to hi

Else:

Let mid = lo + ceiling((hi - lo)/2)

BSHelper(A, k, __mid - k__, __mid + k__)

BSHelper(A, k, __lo__, __mid - 1__)

BSHelper(A, k, __mid__, __hi__)

Various very similar alternatives (e.g., lo to mid and mid+1 to hi instead) would be �ne.
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2. Draw a recursion tree for the closely related recurrence relation below. Include at least two levels
(root and children) and one node from the next level. Label your tree with: the problem
size (in each node), the work per node (next to each node), the total work per level, and a

general form for the work per level (labelling the level i to avoid confusion with k above). [6
marks]

The recurrence is:

T (n) =

{
2T (n/2) + k lg k when n > 2k + 1

k lg k when n ≤ 2k + 1

SOLUTION: Here is our tree:

3. Use your tree to show that the recurrence above is in O(n lg k). Show your work. You may

(correctly!) assume that the height of the tree is lg(nk ). Reminder:
∑n

i=0 2i = 2n+1 − 1. [3 marks]

SOLUTION: We'll sum the work per level to get the total work in the tree. (Technically, we are

o�-by-one or so in our depth calculation, but it would not turn out to matter; so, we kept it simple!)∑lg(n
k
)−1

i=0 2ik lg k = k lg k
∑lg n

k
−1

i=0 2i = k lg k(2lg
n
k − 1) = k lg k(nk − 1) = n lg k − k lg k ∈ O(n lg k)
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5 I Want the Truth [8 marks]

For each statement below, circle one answer to indicate whether the statement is always true, never true,
or sometimes true for the circumstances indicated. So, if every possibility indicated causes the statement

to be true, answer �always�. If none causes the statement to be true, answer �never�. If some cause the

statement to be true and others cause it to be false, answer �sometimes�.

1. Evaluate this statement over the possible input arrays of integers with length of at least 10 passed to

the algorithm: The RandomizedQuickSelect algorithm picks the smallest element as its pivot.

SOLUTION: Sometimes it could pick the smallest. It picks the pivot uniformly at random and so

has just as much chance of picking one order statistic as another.

2. Evaluate this statement over the set of all realistic divide-and-conquer algorithms: Divide-and-conquer

algorithms solve non-base-case inputs by: dividing the input into two subproblems, solving the two

subproblems, and then computing a solution based on the subproblems' solutions.

SOLUTION: MergeSort does this, but BinarySearch does not. Some algorithms divide into more

or fewer than two subproblems.

3. Evaluate this statement over the legal instances of the closest pair of points problem with at least four

points: A pair of points is less than δ apart within the δ-wide strip on the left side of the dividing

line (i.e., both points are on the left side) on the top-level recursive call to the divide-and-conquer

closest pair of points algorithm.

SOLUTION: δ is the closest distance between any pair of points, where both points are on the same

side of the dividing line (i.e., the minimum of the closest distance between a pair of points on the left

and the closest distance between a pair of points on the right).

Given that, there cannot be two points where both are on the same side that are closer than δ!

4. Evaluate this statement over the instances of weighted ISP (interval scheduling problem) in which all
weights are the same (e.g., all 3 or all 7): Running the greedy algorithm for unweighted ISP on

the instance (with the weights deleted) selects as a solution a set of jobs that would also be optimal

if selected in the original instance.

SOLUTION: This set of jobs will always be optimal, because the unweighted ISP problem acts like

a weighted ISP with weights all equal to 1, and uniformly scaling the weights (to any other positive

constant) has no impact on the relative value of di�erent solutions.
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6 Bonus [Up to 4 Bonus Marks]

Bonus marks add to your exam total and also to your course bonus total. What course bonus points are

worth still isn't clear, however! WARNING: These questions are too hard for their point values. We are

free to mark these questions harshly. Finish the rest of the exam before attempting these questions. Do

not taunt these questions.

1. In �I'm a k, You're O(k)", justify each of the following statements: [2 marks]

(a) k ≤ n
SOLUTION: k is one more than the maximum displacement of any element from its sorted

location. Can we displace by n indexes (or more)?

(b) If n ≤ 2k+ 1, then using MergeSort to sort the whole array runs in O(k lg k) time. (Justify this

carefully for credit!)

SOLUTION: It's very tempting to say something like n ∈ Θ(k) (which is both true and

useful!), but this isn't enough in general. (See the next problem.) So, you have to either prove

that this is enough (a pain) or take it step by step from MergeSort's bound of n lg n through

steps like n lg n ≤ (2k + 1) lg(2k + 1) until you get to a O(k lg k) bound. (Technically, I should
have written something like cn lg n.)

(c) Give an example of a function f(n) such that f(n) 6∈ O(f(k)) even when n ∈ Θ(k).

SOLUTION: Try f(n) = 2n. (Yes, f(n) can be in O(f(k)) even in cases like this. Indeed, if

you're allowed to pick the relationship of n and k, you can just pick n = k (which is consistent

with n ∈ Θ(k) of course!) and there's no breaking example. But. . . this is a bonus problem. We

leave you to �gure out that that's not what we were aiming at.)

2. Imagine we have n ≥ 0 indistinguishable (i.e., look-alike) balls and k ≥ 1 indistinguishable jars. How

many di�erent ways are there to put the balls in the jars? Your solution must run in O(kn) time. [2
marks]

Explanation: Consider n = 2, k = 2, that is, two balls and two jars. What we mean by indistinguish-

able balls is that all you know about a jar is how many balls are in it, not which ones. So, if you have

2 balls and 2 jars, putting ball A in jar A and ball B in jar B does not count as a di�erent way to

organize the balls from putting ball B in jar A and ball A in jar B (because you cannot tell the balls

apart). Furthermore, the jars are indistinguishable; so, putting both balls in jar A and none in jar B

is not distinguishable from putting both balls in jar B and none in jar A (because you cannot tell the

jars apart, either). So, with n = 2, k = 2, there would only be two possible ways to arrange the balls:

both in one jar or one in each jar.

SOLUTION: This is a delightful problem. We can give several hints.

First: You can always choose to sort the jars from most to least full. (Any permutation of such

an ordering is indistinguishable from that ordering; so, you don't need to bother generating all such

permutations.)

Second: If you sort and �nd the last jar is empty, can you break the problem down into a subproblem?

What's the other possibility for the last jar that you haven't handled?

Third: If you sort and �nd that the last jar has at least one ball in it, what does it mean about the

number of balls in the other jars? Can you use this to induce a subproblem?

Finally: �Integer Partition�.
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