
CPSC 320 Sample Solution, The Stable Marriage Problem

January 4, 2017

1 Trivial and Small Instances

1. Write down all the trivial instances of SMP. We think of an instance as �trivial� roughly if its solution
requires no real reasoning about the problem.

SOLUTION: If you think of the smallest possible instances, it usually guides you towards trivial
instances. In SMP, it's tempting to say that the smallest possible instance has one man and one
woman, but we can go smaller! Degenerate cases like �zero men and zero women� are often helpful!

So, is zero men and zero women trivial? Sure! There's exactly one solution, in which no one is
matched with anyone else.

What about one man and one woman? Regardless of their preferences (which, in fact, must be simply
for each other), the only solution is for the one man to marry the one woman.

So, zero men/women and one man/woman are the trivial instances.

FROM SOLUTION REPRESENTATION: The solution for a problem with n = 0 is the empty
set of pairings {}. The solution for a problem with n = 1 is {(m1, w1)}.
What about two men and women? You might start that here, but you'll quickly realize it belongs in
the next slot. . .

2. Write down two small instances of SMP. One should be your candy/baked goods example above:

SOLUTION: Here's what we might have come up with. This is just a sample of three men and
women and their preferences for each other that could come from the baked goods example:

w1: m2 m1 m3 m1: w3 w1 w2

w2: m1 m2 m3 m2: w3 w2 w1

w3: m2 m1 m3 m3: w2 w1 w3

Each woman lists their preferences for men in order from most to least preferred.

Each man lists their preferences for women in the same order.

FROM PROBLEM REPRESENTATION: We can rephrase this with our new notation, but
honestly, there's not much to do. n = 3, clearly. W = {w1, w2, w3}, but all that changes there is
subscripts vs. numbers on the side. P [w1] is the �rst list on the left. Similarly, we can see the men
and the other preference lists.

FROM SOLUTION REPRESENTATION: There happens to be only one stable solution to this
instance: {(m2, w3), (m1, w1), (m3, w2)}.
On to the next question. . .

The other can be even smaller, but not trivial:

SOLUTION: We can go smaller and still have a trivial example. So, let's do so. Two men and two
women:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

w1: m1 m2 m1: w1 w2

w2: m1 m2 m2: w2 w1

With two men/women, there are only two choices of preference list. So, I gave the women matching
preference lists and the men opposite preference lists, just to illustrate both possibilities. That may
be useful or may not!

FROM PROBLEM REPRESENTATION: I won't explicitly use our new names here, since little
has changed, as noted above.

FROM SOLUTION REPRESENTATION: Again, there happens to be only one stable solution
to this instance: {(m1, w1), (m2, w2)}. (Want one with more than one solution? Try tweaking w1's
preference list.)

3. Hold this space for another instance, in case we need more.

SOLUTION: None provided here.

2 Represent the Problem

1. What are the quantities that matter in this problem? Give them short, usable names.

SOLUTION: You may have come up with more, fewer, or di�erent quantities than me, but here are
some useful ones.

� n, the number of men and the number of women.

� M , the set of men {m1,m2, . . . ,mn} (so, n = |M |)
� W , the set of women {w1, w2, . . . , wn} (again, n = |W |)
� Each man's preference list�which we might call P [mi] for man i�is a permutation of W , the
set of women. Note that I'm forcing the men to have complete preferences for all the women,
no ties. That's the simplest version of the problem; so, probably the one to start with. I'll also
assume that everyone prefers being married to not being married.

� Similarly, each woman's preference list, P [wj], is a permutation of M .

� It's good to have a notation to indicate whether a woman prefers one man to another (or similarly
for a man). I'll use mi >wj mk to mean that wj prefers mi to mk, i.e., mi occurs earlier in wj 's
preference list than mk.

2. Go back up to your trivial and small instances and rewrite them using these names.

SOLUTION: See above.

3. Use at least one visual/graphical/sketched representation of the problem to draw out the largest
instance you've designed so far:

SOLUTION: This isn't a problem that suggests a lot of obvious graphical solutions, but I like
drawing this as two columns with the preferences on the outside. That leaves space in the middle for
us to draw lines in between men and women:

m2 m1 m3 :w1 m1: w3 w1 w2

m1 m2 m3 :w2 m2: w3 w2 w1

m2 m1 m3 :w3 m3: w2 w1 w3

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

You might also create an n×n grid, with women across the top and men down the side. That would
let you put information about each potential couple in each grid cell.

Di�erent graphical representations will suggest di�erent information in the problem to focus on or
ignore or facilitate particular ways of thinking about the problem. We'll keep pushing on this as the
course proceeds!

FROM SOLUTION REPRESENTATION: Abandoning plain text, let's actually draw this:

w1

w2

w3

m1

m2

m3

4. Describe using your representational choices above what a valid instance looks like:

SOLUTION: What �shape� is an instance (in programming terms, what inputs of what type con-
stitute an input) and what additional constraints are there on inputs of that �shape� for them to be
valid?

The crucial piece of an instance is the preference lists for the men and women. We need to know how
many of those there are.

So, we might describe an instance as a tuple: (n, PW , PM), where n is the number of women (and
also the number of men), PW is a list of n preference lists for the women (where element i is wi's
preferences), and PM is a list of n preference lists for the men.

If you're more comfortable thinking in programming input/output terms, you might say that the input
is: one line with a (non-negative) integer n, then n lines representing the women's preference lists
each with n whitespace-separated numbers forming a permutation of 1, . . . , n, and �nally n similar
lines representing the men's preference lists.

3 Represent the Solution

1. What are the quantities that matter in the solution to the problem? Give them short, usable names.

SOLUTION: Central to our solution are marriages, which are pairs (mi, wj) indicating that man i
and woman j are married. A solution, then is a set of pairings (with some constraints we describe
next).

2. Describe using these quantities makes a solution valid and good:

SOLUTION: There's no technical weight intended here for the words �valid� and �good�. They're
just ways to think about how you might judge solutions. A solution might be invalid if it violates a
constraint. It might be bad if it's low-quality for some reason. (Later, we'll also solve optimization
problems where we really are searching for the best among many valid solutions.)

In this case, let's focus on validity measuring whether we've successfully married everyone o� just
once. A valid solution is a perfect matching: a set of pairings such that each woman appears in
exactly one pairing and each man appears in exactly one as well.

Any such set of pairings is one we could propose to our women and men as a way to pair them o�.
A good one is �self-enforcing� in the sense that no man and woman who aren't married will decide to
break the arrangement we suggested. So, a good solution is stable in that it contains no instabilities.

Next, what's an instability? An instability can occur for a man mi and woman wj who are not
matched in the solution ((mi, wj) 6∈ the set of pairings). Let w′ be mi's partner in the solution and
m′ be wj 's partner. Then, mi and wj constitute an instability if mi >wj m

′ and wj >mi w
′. That is,

each of mi and wj prefers the other to their assigned partners.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3. Go back up to your trivial and small instances and write out one or more solutions to each using
these names.

SOLUTION: See above.

4. Go back up to your drawn representation of an instance and draw at least one solution.

SOLUTION: Again, see above.

4 Similar Problems

As the course goes on, we'll have more and more problems we can compare against, but you've already
learned some. So. . .

Give at least one problem you've seen before that seems related in terms of its surface features (�story�),
problem or solution structure, or representation to this one:

SOLUTION: You may not have enough background in problems to feel like you've seen a lot of similar
problems, but you have at least seen problems where you organize a bunch of values by comparisons among
them: sorting. If you've worked with bipartite graphs and matching problems, anything associated with
them seems promising, especially maximum matching. (We often discuss �goodness� measures that give
more points to a �rst preference than a second and so forth, like the Borda count. You could frame that
problem as a maximum matching problem!) This also feels a bit like an election or auction, which takes us
toward game theory. Maybe you'd even decide this feels a bit like hashing (mapping a value in one set to
a di�erent value in another set).

The point isn't to be �right� yet; it's to have a lot of potential tools on hand! As you collect more tools,
you'll start to judge which are more promising and which less.

5 Brute Force?

You should usually start on any algorithmic problem by using �brute force�: generate all possible solutions
and test each one to see if it is, in fact, the solution we're looking for.

1. A possible SMP solution takes the form of a perfect matching: a pairing of each woman with exactly
one man. We'll call a perfect matching a �valid� (but not necessarily good) solution.

It's more di�cult than the usual brute force algorithm to produce all possible perfect matchings;
instead, we'll count how many there are. Imagine lining all the men up in a row in a particular order.
How many di�erent ways we can line up (permute) the women next to them?

SOLUTION: There are n women we can line up with the �rst man. Once we've chosen the �rst,
there are n− 1 to line up next to the second. Then, n− 2 next to the third, and so on. Overall, then,
that's n × n − 1 × n − 2 × . . . × 2 × 1 = n!. There are n! perfect matchings, our �valid� solutions.
That's already super-exponential, even if it takes only constant time per solution to produce them!

We asked in the challenge problems for an algorithm to produce these. It's unusually challenging to
design for a brute force algorithm, but it's useful to think about; so, we'll work through it here.

Before we dive into an algorithm, let's just try creating all solutions for an example. We might start
by just marrying the �rst person (say, w1) o� to someone. After all, we know she needs to be married
to somebody!

w1

w2

w3

m1

m2

m3

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

https://en.wikipedia.org/wiki/Borda_count
http://creativecommons.org/licenses/by-nc/4.0/

We can now set w1 and m1 aside, which gives us. . . another SMP instance that's smaller. As soon
as you hear words like �and that leaves us with [something that looks like our original problem] but
smaller�, you should be thinking of recursion. Let's just assume we can recursively construct all
possible solutions. That will give us back a bunch of sets of pairings, in this case two:

w2

w3

m2

m3 and

w2

w3

m2

m3

We can add our set-aside pairing (m1, w1) onto each of these:

w1

w2

w3

m1

m2

m3 and

w1

w2

w3

m1

m2

m3

That's all the solutions in which w1 weds m1. Who else can w1 marry? Each of the other men. We
can use the same procedure for each other possible pairing. Must w1 marry someone? Yes, because
we need a perfect matching. So, that covers all the possibilities for w1 and, recursively, for everyone
else.

Now we're ready for an algorithm. Let's call it AllSolns. It's recursive; so, what's the base case?
Our trivial cases are where n = 0 or n = 1. Let's try n = 0 as a base case. Looking back at the trivial
cases, I see the solution for n = 0 is the empty set of pairings {}. With that, let's build the algorithm.
I'll use return when I'm producing the whole set at once and yield to produce one at a time. (You
could just initialize a variable to the empty set and add in each yielded solution, returning the whole
set at the end.)

procedure AllSolns(W , M)
if |W | = 0 then . The base case we chose.

return {{}} . The set of sol'ns, containing only the empty sol'n.
else

choose a w ∈W . Any one, e.g., the �rst.
for all m ∈M do . Iterate through the men,

for all S ∈ AllSolns(W − {w},M − {m}) do . and the subproblem sol'ns.
yield {(m,w)} ∪ S . Add the set-aside pairing.

end for
end for

end if
end procedure

If we use our analysis techniques to count the number of solutions this creates, the analysis will
parallel the recursive function itself. In the base case when n = 0, AllSolns produces one solution.
Otherwise, for each of the n men, it makes a recursive call with n′ = n − 1 (one fewer man and one
fewer woman in the subproblem). For each solution produced by that recursive call, it also generates
one solution. If we give the number of solutions a name, we can express this as a recurrence:

N(n) =

{
1 when n = 0

n ∗N(n− 1) otherwise

So, for example, N(4) = 4∗N(3) = 4∗3∗N(2) = 4∗3∗2∗N(1) = 4∗3∗2∗1∗N(0) = 4∗3∗2∗1∗1 = 4!.
And, indeed, this is exactly the de�nition of factorial. So, N(n) = n!. There are n! solutions to a
problem of size n.

2. Once we have a possible solution, we must test whether it's the solution we're looking for. Informally,
we'll refer to this as asking whether it's a �good� solution.

A perfect matching is a good solution if it has no instabilities. Design a (brute force!) algorithm
that�given an instance of SMP and a perfect matching�determines whether that perfect matching

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

contains an instability. (As always, it helps to give a name to your algorithm and its parameters,
especially if your algorithm is recursive. Remember, for brute force: generate each possible solution
(possible instability, in this case) and then test whether it really is a solution.)

SOLUTION: The form of a potential instability is a pair (man and woman). We therefore want to
go through each pair of one man and one woman and check that (1) they are not already married (or
they cannot cause an instability) and (2) they'd rather be with each other that their partners. (I'll
assume we have a quick way to �nd a partner, which shouldn't be hard to create.) That should look
like the following, where (n, PW , PM) is an instance of SMP and S is a solution to that instance (a
perfect match and therefore a set of pairings (mi, wj)):

procedure IsStable((n, PW , PM), S)
for all w ∈ {w1, . . . , wn} do

for all m ∈ {m1, . . . ,mn} do
if (m,w) 6∈ S then

�nd m′ such that (m′, w) ∈ S
�nd w′ such that (m,w′) ∈ S
if m >w m′ and w >m w′ then

return false
end if

end if
end for

end for
return true

end procedure

3. Exactly or asymptotically, how long does your algorithm take? (Again, you should explicitly name
the size of an instance and perform your analysis in temrs of that name!)

SOLUTION: Let's assume we do an e�cient (constant-time) job of operations like comparing w's
preferences for the two men and checking if (m,w) is in S. (It's not immediately obvious how to do
this, but with some careful data structures and O(n2) preprocessing, it's doable!) The number of
iterations in the inner loop is independent of which iteration we're on in the outer one. The body
takes constant time. So, in the worst case (when we �nd no instability), this takes |M | ∗ |W | ∗O(1) =
n ∗ n ∗O(1) = O(n2) time.

4. Brute force would generate each valid solution and then test whether it's good. Will brute force be
su�cient for this problem for the domains we're interested in?

SOLUTION: Looks like brute force will take O(n2n!) time. That's horrendous. It won't do for even
quite modest values of n. (But, it is good enough to solve the n = 3 example we demonstrated in the
classroom.)

6 Lower-Bound (Extra)

SOLUTION: We didn't discuss this in class, but you can often lower-bound the runtime of any algorithm
to solve a problem by determining how long it would take simply to read the input to the problem.

By lower-bounding the problem, we have a �goal� to shoot for in �nding an e�cient algorithm. If we
upper-bound the worst-case runtime of some algorithm to be the same as the lower-bound on the problem,
then we know that we have an asymptotically optimal algorithm.

Looking back at our most useful instance description (the one that talks about �whitespace-separated�
preference list lines), we can see that we'll have one number (n), followed be n lines each with n numbers,
followed by another n lines of n numbers each. That's n + n2 + n2 ∈ Ω(n2).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

(Our analysis also gives an O bound, but it's the Ω bound we care about, since the purpose is to
lower-bound runtime of solutions.)

So any algorithm that even reads the input will take Ω(n2) time.

7 Promising Approach

Unless brute force is good enough, describe�in as much detail as you can�an approach that looks promis-
ing.

SOLUTION: You may have thought of lots of ideas. (E.g., earlier I sketched a Borda count-based
approach that uses maximum matching. We've noticed that if a man and a woman both most-prefer each
other, we must pair them; that might form the kernel of some kind of algorithm. Etc.)

I won't go into one here. Instead, I refer you to the textbook's description of the rather awesome and
Nobel prize-winning Gale-Shapley algorithm.

Keen note about Gale-Shapley: It runs in O(n2) time. That means it matches our lower bound on the
problem's runtime and so is asymptotically optimal!

8 Challenge Your Approach

1. Carefully run your algorithm on your instances above. (Don't skip steps or make assumptions;
you're debugging!) Analyse its correctness and performance on these instances:

SOLUTION: For fun, we'll use G-S with women proposing.

G-S correctly terminates immediately on any n = 0 example with an empty set of marriages. With
n = 1, the one woman proposes to the one man, who must accept, and the algorithm correctly
terminates with them married.

Going back to our other two examples:

(a) Example #1:

w1: m2 m1 m3 m1: w3 w1 w2

w2: m1 m2 m3 m2: w3 w2 w1

w3: m2 m1 m3 m3: w2 w1 w3

G-S doesn't specify what order the women propose. We'll work from top to bottom:

i. w1 proposes to m2, who accepts. E = {(m2, w1)}
ii. w2 proposes to m1, who accepts. E = {(m2, w1), (m1, w2)}
iii. w3 proposes to m2, who prefers w3 to w1. m2 breaks his engagement with w1 and accepts

w3's proposal. E = {(m2, w3), (m1, w2)}
iv. w1 proposes to m1 (2nd on her list), who prefers w1 to w2. m1 breaks his engagement with

w2 and accepts w1's proposal. E = {(m2, w3), (m1, w1)}
v. w2 proposes to m2, who prefers w3 to w2 and so declines the proposal. E = {(m2, w3), (m1, w1)}
vi. w2 proposes to m3 (last on her list!), who accepts. E = {(m2, w3), (m1, w1), (m3, w2)}
vii. The algorithm terminates with the correct solution S = {(m2, w3), (m1, w1), (m3, w2)}.

(b) Example #2:

w1: m1 m2 m1: w1 w2

w2: m1 m2 m2: w2 w1

We'll again use G-S with women proposing, working top to bottom.

i. w1 proposes to m1, who accepts. E = {(m1, w1)}

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

ii. w2 proposes to m1, who declines (prefers w1 to w2). E = {(m1, w1)}
iii. w2 proposes to m2, who accepts. E = {(m1, w1), (m2, w2)}
iv. The algorithm terminates with the correct solution S = {(m1, w1), (m2, w2)}.

2. Design an instance that speci�cally challenges the correctness (or performance) of your algorithm:

SOLUTION: Skipping this, since we've already seen a proof of correctness for G-S!

9 Repeat!

Hopefully, we've already bounced back and forth between these steps in today's worksheet! You usually
will have to. Especially repeat the steps where you generate instances and challenge your approach(es).

SOLUTION: We bounced back and forth quite a bit, even in this carefully crafted solution.
P.S. No solutions to challenge problems, but feel free to talk to us about them!

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Trivial and Small Instances
	Represent the Problem
	Represent the Solution
	Similar Problems
	Brute Force?
	Lower-Bound (Extra)
	Promising Approach
	Challenge Your Approach
	Repeat!

