
CPSC 320 Notes, Asymptotic Analysis

January 14, 2017

1 Comparing Orders of Growth for Functions

For each of the functions below, give the best Θ bound you can �nd and then arrange these functions by
increasing order of growth.

n + n2 2n

55n + 4 1.5n lg n
n! lnn
2n log(n2) n

logn

(n lg n)(n + 1) (n + 1)!

1.62n tricky, but doable!

2 Functions/Orders of Growth for Code

Give and brie�y justify good Θ bounds on the worst-case running time of each of these pseudocode
snippets dealing with an array A of length n. Note: we use 1-based indexing; so, the legal indexing of A is:
A[1], A[2], . . . , A[n].

Finding the maximum in a list:

Let max = -infinity

For each element a in A:

If max < a:

Set max to a

Return max

�Median-of-three� computation:

Let first = A[1]

Let last = A[n]

Let middle = A[floor(n/2)]

If first <= middle And middle <= last:

return middle

Else If middle <= first And first <= last:

return first

Else:

return last

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


Counting inversions:

Let inversions = 0

For each index i from 1 to n:

For each index j from (i+1) to n:

If a[i] > a[j]:

Increment inversions

Return inversions

3 Progress Measures for While Loops

Assume that FindNeighboringInversion(A) consumes an array A and returns an index i such that A[i]
> A[i+1] or returns -1 if no such inversion exists. Let's work out a bound on the number of iterations of
the loop below in terms of n, the length of the array A.

Let i = FindNeighboringInversion(A)

While i >= 0:

Swap A[i] and A[i+1]

Set i to FindNeighboringInversion(A)

1. Give and work through two small inputs that will be useful for studying the algorithm. (What
is �useful�? Try to �nd one that is simply common/representative and one that really stresses the
algorithm.)

2. De�ne an inversion (not just a neighboring one), and prove that if an inversion exists at all,

a neighboring inversion exists.

3. Give upper- and lower-bounds on the number of inversions in A.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. Give a �measure of progress� for each iteration of the loop in terms of inversions. (I.e., how can we
measure that we're making progress toward terminating the loop?)

5. Give an upper-bound on the number of iterations the loop could take.

6. Prove that this algorithm sorts the array A (i.e., removes all inversions from the array).

4 Challenge Problem

1. Give the best Θ bound you can �nd for
√
n
√
n
and then arrange it with respect to the other functions

from the �Comparing Orders of Growth for Functions� section.

2. Imagine that rather than FindNeighboringInversion, we'd used FindInversion, which returns two
arbitrary indices (i, j) such that i < j but A[i] > A[j] and then in our loop swapped A[i] and
A[j]. Could the loop run forever? If it terminates, would the array be sorted? Can you upper- and
lower-bound the loop's runtime? Comparing the �neighboring� version to this version, how important
is it which inversion is found?

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Comparing Orders of Growth for Functions
	Functions/Orders of Growth for Code
	Progress Measures for While Loops
	Challenge Problem

