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In our analysis of the stable matching problem (and variants), we were asked to count the number of
possible matchings (disregrading potential instabilities) between the possible “men” and “women” given as
input. Mathematical tools from combinatorics, which have a deep connection with algorithm design and
analysis, enable us to complete this task. Tools from combinatorics can often tell us whether or not a brute
force algorithm for a problem is possible or not. In this article, we will overview a number of formulae and
principles from combinatorics which enable us to count the size of a solution space.

1 Permutations and the Rule of Product
The first rule we will introduce is known as the rule of product, also sometimes called the fundamental
counting principle.

Principle 1 (Rule of Product). Let A, B be sets. If there are x ways to select an element from A, and y
ways to select an element from B, then there are xy ways to select an element from A×B.

For instance, suppose you are ordering dinner from a restaurant where you can only have one main dish
and one dessert. Suppose there are 3 possible main dishes and 2 possible desserts, then will have 3× 2 = 6
choices for your dinner. A possibility tree is a visual representation of such choices:

Figure 1: Illustration of a Possibility Tree, Source: Wikipedia

Question 1. If S is a set of size n, how many subsets of S are possible?

Solution 1. There are a number of ways to approach this problem. Let S = {x1, ..., xn}

• The first approach is to apply the product rule. To construct a subset of S, we make n choices, one
for each element. The first choice C1 is including or excluding x1. The second choice C2 is including
or excluding x2, and so on until we reach the nth choice Cn, which is including or excluding element
xn. Each subset of S corresponds to an element of C1 × ... × Cn. Since each set Ci has 2 elements
(include or exclude), then by the rule of product, |C1 × ... × Cn| = 2× ...× 2︸ ︷︷ ︸

n times

= 2n. Hence there are

2n subsets of S.

• The second approach is proving by induction that there are 2n possible subsets.

• Another approach is “encoding” every subset of S by a binary string of length n, and applying a product
rule argument to show that there are 2n subsets.

Next, we consider r-permutations, which count orderings of sets.

Definition 1. An r-permutation is an ordering of r elements in a set S = {x1, ..., xn} without repetition.
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Ordering means that arrangements (x1, x2) and (x2, x1) are distinct permutations of a set since the
elements x1, x2 are put in a different order in each case.

For instance, suppose we have a race where there are 10 runners. Suppose we want to select a first,
second, and third place finishers in the race. A choice of finishers is a 3-permutation of the set of 10 runners,
since ordering matters in this case.

The rule of product be used to compute the number of r-permutations of a set.

Definition 2 (Factorial). The number n! (n factorial) is defined as n! = n× n− 1× ...× 1. By convention,
0! = 1.

For instance, 4! = 4× 3× 2× 1 = 24.

Formula 1 (Number of r-permutations). The number of r-permutations of a set S of n elements is n!
(n− r)!

Proof. An r-permutation of a set S can be thought of a list L of r distinct elements from S. Hence, to
construct the list L, we can select among n elements of the set S for its first element, among n− 1 elements
for its second element, and so on, until we select among n− (r − 1) elements for its rth element. Hence by
the rule of product, the number of r-permutations of S is:

n(n− 1)...(n− (r − 1)) = n!
(n− r)(n− (r + 1))...(1) = n!

(n− r)!

The following examples illustration how to apply Formula 1 in computing the number of r-permutations
of a set.

Question 2. If we have n “men” and n “women”, how many possible matchings between the men and the
women are there?

Solution 2. Let {m1, ..., mn} denote the set of “men”. “Man” m1 may be paired with one of n “women”,
m2 may be paired with one of n−1 “women”, and so on until mn is paired with the only remaining “woman”.
Hence the number of possible matchings is n(n− 1)...1 = n!.

Question 3. If we have nm “men” and nw “women” where nm ≥ nw, how many possible matchings between
the men and the women are there wherein each woman has a partner?

Solution 3. Let {w1, ..., wnw} denote the set of “women”. “Woman” w1 may be paired with one of nm

“men”, w2 may be paired with one nm − 1 “men”, and so on until wnw
is paired with one of nm − nw + 1

men since nw − 1 men have to taken by this point. Hence, the number of possible matchings is

nm(nm − 1)...(nm − (nw − 1)) = nm!
(nm − nw)!

Note that when nm = nw, the formula reduces to nm! since 0! = 1.

2 Combinations and Bi/Multinomial Coefficients
In permutations, the ordering matters. Now we consider the case where ordering does not matter.

Definition 3. An r-combination is a subset of r elements of a set S = {x1, ..., xn}.

Crucially, arrangements (x1, x2) and (x2, x1) are considered the same combination of elements in a set
since the elements which they contain are the same, regardless of ordering.

For instance, suppose we have an election where there are 10 candidates. Suppose we want to elect 3
people to a council. (For simplicity, suppose there are no special positions such as the chair of the council.)
A choice of councils is a 3-combination of the set of 10 candidates, since ordering does not matter in this
case and that all matters is the candidates elected.

There is a special symbol to denote the number of r-combinations of a set of size n.

Definition 4. The binomial coefficient
(

n

r

)
denotes the number of r-combinations of a set of size n.
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For small n, r, we can compute the number of r combinations by listing out all the possibilities. For
instance, the following are all possible 3-combinations of a set of size 4: {A, B, C, D}:

ABC ABD ACD BCD

Hence
(4

3
)

= 4. However, we would prefer to have a general formula.

Formula 2 (Number of r-combinations). The number of r-combinations of a set S of n elements is n!
r!(n− r)!

Proof. Each r-combination of a set S {x1, ..., xr} has r! possible r-permutations since there are r! possible
ways to reorder the elements in {x1, ..., xr}. Because there are n!

(n−r)! possible r-permutations, then:

n!
(n− r)! = r!

(
n

r

)
Now dividing both sides by r! yields (

n

r

)
= n!

r!(n− r)!

Combinations come up quite naturally in algorithmic, among other, problems.

Question 4. How many edges does an undirected, complete graph G = (V, E) of n vertices have?

Proof. Let V denote the set of vertices in the graph and by assumption, |V | = n since there are n vertices.
Every subset of two vertices in V corresponds to an edge in G. Hence, there are

(
n
2
)

= n(n−1)
2 edges in

total.

Question 5. Suppose we draw a poker hand, which includes 5 cards, from a deck of 52. How many hands
are possible?

Proof. We will need to compute the number of 5-combinations in a set of 52, which is
(52

5
)

= 2, 598, 960.

Question 6. If we have nm “men” and nw “women” where nm ≥ nw, how many possible matchings between
the men and the women are there wherein each woman has a partner?

Proof. Choose a subset of nw men who we can match to women. Then there are
(

nm

nw

)
possible such

subsets, and nw! possible matchings for each subset. By the rule of product, we have(
nm

nw

)
nw! = nw!nm!

(nm − nw)!nw! = nm!
(nm − nw)!

possible matchings. This agrees with our previous computation.

2.1 Properties of Binomial Coefficients
Binomial coefficients satisfy some interesting properties. Firstly, they satisfy a recursive formula.

Formula 3 (Recurrence Relation for Binomial Coefficients).
(

n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
We can prove this formula without resorting to direct calculation. This is known as the method of “bijective

proof”.

Proof. To construct a subset of size k in S = {x1, ..., xn}, we can either include the first element x1 or
exclude it.

In the case we include x1, we can adjoin it to a subset of size k − 1 from the n− 1 elements we haven’t
looked at yet. This yields

(
n−1
k−1
)

possible subsets.
In the case we exclude x1, we can construct a subset of size k from the remaining n−1 elements, yielding(

n−1
k

)
subsets in total.

Since all
(

n
k

)
possible subsets of size k can be formed by either including x1 or excluding it, we have:
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(
n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)

In the above proof, we have implicitly applied the rule of sum, which we will state below for completeness:

Principle 2 (Rule of Sum). Let X and Y be disjoint sets. If there are x ways to select an element from X
and y ways to select an element from Y , then there are x + y ways to select an element from X ∪ Y (X or
Y).

Figure 2: Illustration of a Disjoint Sets, Source: Wikipedia

The rule of sum differs from the rule of product, although both involve combining two sets A, B in some
way. For the rule of sum, we select from a single set A ∪ B (eg. one dish which is either a main dish or a
dessert), whereas for the rule of product, we select one element from each of A and B, which corresponds to
an element of A×B (eg. a main dish and a dessert.)

Next, the following are additional properties of binomial coefficients. As we have done above, think about
why these properties are true using the definition as binomial coefficients as counting subsets of a set, instead
of direct calculation.

•
(

n

0

)
=
(

n

n

)
= 1

•
n∑

k=0

(
n

k

)
= 2n

•
(

n

k

)
=
(

n

n− k

)
. This is a symmetry property.

The name binomial coefficient comes from the use of binomial coefficients in the binomial theorem and
the binomial distribution of probabilities. For instance, a binomial distribution tells you the chance of seeing
k heads in n independent coin flips. Finally, binomial coefficients can be arranged nicely in Pascal’s Triangle.

Figure 3: Illustration of a Pascal’s Triangle, Source: Wikipedia

2.2 Multinomial Coefficients
Binomial coefficients can also be generalized into multinomial coefficients.

Definition 5. The multinomial coefficient
(

n

k1, k2, ..., km

)
denotes the ways to seperate n objects into m

bins where k1 objects are first in the first bin, k2 objects in the second, and so on until the mth bin. Note
that we should have k1 + k2... + km = n.
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Formula 4.
(

n

k1, k2, ..., km

)
= n!

k1!k2!...km!

Proof. Choose k1 of the n objects to be labelled in the first bin. Then choose k2 of the remaining n − k1
objects to be put in the second bin. By the rule of product, we have

(
n

k1, k2, ..., km

)
=
(

n

k1

)(
n− k1

k2

)
...

(
n− k1 − ...− km−1

km

)
= n!

k1!(n− k1)!
(n− k1)!

k2!(n− k1 − k2)! ...
(n− k1 − ...− km−1)!

km!0!

=
(

n!
k1!k2!...km!

)

Note that
(

n
k

)
=
(

n
k,n−k

)
, so the multinomial coefficient is indeed a generalization of the binomial coeffi-

cient. The following are some examples of things we can do with multinomial coefficients:

Question 7. How many possible “words” can be formed by ordering letters in “REARRANGEMENT” are
there?

Solution 4. REARRANGEMENT is a 13 letter word with 3 Rs, 3 Es, 2 As, 2 Ns, and one G, M, T each.
Since we can choose 3 of 13 positions where the Rs are placed. Next we can choose 3 of 10 remaining
positions where an E is placed, and so on. Next we can choose 2 of 7 remaining positions where A is placed,
2 of 5 remaining positions where N is placed, until we have 3 remaining positions for G, M, T. This yields the
multinomial coefficient: (

13
3, 3, 2, 2, 1, 1, 1

)
= 13!

3!3!2!2! = 43243200

Question 8. If we have nH hospitals, each with s1, ..., snH
residency slots which accomodate s1 + ...+snH

=
nR residents, how many possible ways are there to assign residents to hospitals? (Assume we only care about
which hospital we assign a resident to.)

Solution 5. This is exactly what the multinomial coefficient was built for! In this case, our “objects”
are our residents. Next, we have nH “bins” to which we can assign positions for nR residents satisfying
s1 + ... + snH

= nR. This means that the number of arrangements 1 is(
nR

s1, ..., snH

)
= nR!

s1!...snH
! = nR!

nH∏
i=1

si!

3 Summary
We have only scratched the surface of important combinatorial tools which can be used in analysis of algo-
rithms. In this document, we have covered:

• The rule of product and the rule of sum.

• Different types of permutations and combinations, and ways to compute them.

There are many interesting classes of combinatorial numbers, including numbers which describe partitions
of sets such as the Stirling and Bell numbers. There are also other interesting asymptotic approximations for
combinatorial numbers which can be explored.

Overall, techniques in combinatorics are varied and having a solid grasp of the material covered in this
document will aid your abilities in analyzing algorithms.

1Recall that
∑n

i=1 ai is shorthand for the sum a1 + a2 + ... + an−1 + an. Similarly,
∏n

i=1 bi is shorthand for the product
b1 × b2 × ... × bn−1 × bn
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4 Practice Problems
1. Let X be a set with n elements. How many possible divisions of X into sets A, B are possible such

that A ⊂ X, B ⊂ X and A ∩B = ∅? (Note: A ∪B = X does not have to be true!)

2. Footblog asks a user to create an alphanumeric password (using upper and lower case English letters
and digits 0-9) when a user registers on the system. If the password must be between 5 and 8 characters
long, how many passwords are possible?

3. In the card game of bridge, a deck of 52 cards is divided such that each player gets 13 cards in their
hand. How many possible ways are there to distribute the cards?

4. Consider the following grid graph, which perhaps represents the street layout of a particular neighbour-
hood:

A

B

A person at “A” must travel left or down at each intersection of the grid graph. How many paths from
A to B are possible? (The grid is 8 units long and 3 units wide.)

5. A “multiset” is a set which can contain more than one copy of the same element. For instance {A, B, B}
is a multiset, but {A, B, B} and {B, A, B} are the same multiset.

(a) Suppose we have a set S of size n. How many multisets of size r can be made from S? (Hint:
Find a way to relate this quantity to combinations.)

(b) Using the formula derived in (a), how many non-negative solutions are possible to x1 + x2 + x3 +
x4 = 10? (That is, solutions where x1, x2, x3, x4 ≥ 0)

5 Solutions
1. For each element of X, we can either choose to include it in A, include it in B, or include it in neither

set. Hence, we have 3 choices for what to do with each element of X. Since there are n elements,
there are 3n possible divisions of X into A, B satisfying the given properties.

2. Our character set has 62 elements. Hence a password of length n from the given character set has 62n

elements. Hence, if our password is between 5 and 8 letters then 625 + 626 + 627 + 628 ≈ 2.22× 1014

passwords are possible.

3. Separating the cards into 4 decks of 13 yields the multinomial coefficient
( 52

13,13,13,13
)
. This can be

calculated as (
52
13

)(
39
13

)(
26
13

)(
13
13

)
= 52!

(13!)4 ≈ 5.36× 1028

4. Each path through the graph can be thought of as a string of “W”s and “S”s indicating whether A has
gone south or west at a particular grid corner. Since A must go west 8 times and south 3 times, we need
to count the number of distinct rearrangements of WWWWWWWWSSS. This is

(11
3
)

=
(11

8
)

= 165.

5. (a) A multiset of size r can be encoded by “balls and bars”. For concreteness’ sake, suppose n = 3.
Then distributing r indistinguishable balls among the partitions defined below yields a multiset of
size r:

A B C

Since we have n − 1 possible “bars” (because our original set has n elements) and r possible
“balls”, we have r + n− 1 objects in total we need to arrange. As each ball and each partition is
indistinguishable, we have
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(r + n− 1)!
r!(n− 1)! =

(
n + r − 1

r

)
=
(

n + r − 1
n− 1

)
total possible multisets. You may refer to https://en.wikipedia.org/wiki/Multiset#Counting_
multisets for more information about this formula.

(b) Each solution to x1+x2+x3+x4 = 10 places 10 “balls” in some way into 4 partitions (where some
partitions can be empty.) By the previous formula, we have

(13
10
)

=
(13

4
)

= 715 total solutions.
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