
CPSC 320 2016W2: Assignment 1

January 13, 2017

Please submit this assignment via GradeScope at https://gradescope.com. Detailed instructions about
how to do that are pinned to the top of our Piazza board: https://piazza.com/ubc.ca/winterterm22016/cpsc320/.
Brie�y, your GradeScope account must use the �GradeScope Student #� we distributed in your Connect
gradebook so that we can link your account with you!

Submit by the deadline Friday 20 Jan at 10PM. For credit, your group must make a single submission
via one group member's account, marking all other group members in that submission. Your group's
submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quiz postings). Put these in order starting each problem on a new page, ideally.
If not, very clearly and prominently indicate which problem is answered where!

� Include at the start of the document the GradeScope Student #s of each member of your team.
(No names are necessary.)

� Include at the start of the document the statement: �All group members have read and followed the
guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with anyone
outside my group, (1) I and my collaborators took no record but names (and GradeScope information)
away, and (2) after a suitable break, my group created the assignment I am submitting without help
from anyone other than the course sta�.� (Go read those guidelines!)

� FOR THE FIRST ASSIGNMENT ONLY: Include at the start of the document a note generally
acknowledging if you had collaborators but without listing any names or identifying information.

(On subsequent assignments, you will include collaborators' GradeScope account name, but we didn't
let you know that soon enough to ask it of you here!)

1 Save the Last Dance for Someone Other Than Me

You're arranging a formal dance evening. n people have signed up to lead and n people to follow. There
will be a series of k dances (with k ≤ n), each of which will match each leader with one follower. However,
the same leader and follower will never be paired for more than one dance. (So, every person will dance
with k di�erent people across the k dances.) Your job is to create the series of k matchings for the k dances.

As with SMP, you have complete preference lists over the followers for each leader and complete prefer-
ence lists over the leaders for each follower. (Where leaders and followers in this problem play similar roles
to men and women�or vice versa�in SMP.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
https://piazza.com/ubc.ca/winterterm22016/cpsc320/
https://piazza.com/ubc.ca/winterterm22016/cpsc320/
https://connect.ubc.ca
http://blogs.ubc.ca/cpsc3202016W2/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

1.1 A First Step

Write pseudocode for a simple algorithm that�given n, the 2n preference lists, and k�produces a valid
list of k perfect matchings for the dances, completely ignoring the preferences.

Hint: create your �rst matching by pairing l1 and f1, l2 and f2, and so on. How can you adjust these
matching to create dance 2, dance 3, . . . , dance k.

1.2 De�nitely Not the Two-Step

Someone suggests that for k = 2, we can run Gale-Shapley for the �rst matching and then simply have each
partner in a pair from the �rst round move their �rst round partner to the end of their preference lists and
run Gale-Shapley again for the second round. (I.e., pairs from the �rst round mutually declare each other
their least favorite options for the second round.)

Work through the following counterexample to the correctness of this strategy�with n = 3 and the
preferences of the leaders (l1, l2, l3) on the left and the followers (f1, f2, f3) on the right�to show that it does
not necessarily work. Speci�cally: (a) identify the �rst dance's matchings, (b) write the new preference
lists for the second dance, (c) identify the second dance's matchings, and (d) brie�y explain why these
matchings do not meet the requirements of the problem.

l1: 2 1 3 f1: 2 1 3

l2: 1 2 3 f2: 1 2 3

l3: 3 1 2 f3: 3 1 2

1.3 Almost the Two-Step

Someone suggests that for k = 2, we can run Gale-Shapley for the �rst matching and then simply have each
partner in a pair from the �rst round move their �rst round partner to the end of their preference lists and
run Gale-Shapley again for the second round. (I.e., pairs from the �rst round mutually declare each other
their least favorite options for the second round.)

Finish this proof that this strategy never re-pairs more than a single pair in the second round.
Proof: Imagine that a couple is re-paired in the second round (which is possible) and that�without

loss of generality, since the proof's structure remains the same if we make the opposite assumption�we run
Gale-Shapley with leaders proposing. The couple that are re-paired listed each other as their least-preferred
partners. The leader in that couple must have proposed to everyone else on their list prior to proposing
to their eventual partner (because G-S has them propose in order, one after another, down their preference
list).

At the moment when the leader's second-to-last o�er is rejected, therefore, everyone but the last person
on their preference list must already be engaged because. . .

2 THX 1138

A (conveniently-sized) set of 2n actors are applying for n roles in a play. For each role, an actor is needed
as well as an understudy, someone who plays the role if the main actor has problems. Each actor has a
preference list over the roles. Each one would rather have any of the roles than any of the understudy
positions; however, if they have to take an understudy position, they have the same preference order for
these as for the roles. The casting director is in charge of hiring the actors. The casting director has a
list of preferences over the actors for each role (and has the same list of preferences for each understudy
position as for the corresponding role). We call this problem THX (the THeatre eXtension to the Stable
Marriage Problem).

We want to �nd a solution to THX that is stable.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2.1 Small Example

Here is an example with n = 2.

� a1 prefers r1 to r2 (and therefore u1 to u2)

� a2 prefers r1 to r2

� a3 prefers r2 to r1

� a4 prefers r1 to r2

� For r1, the casting director's preference order is: a1, a3, a2, a4

� For r2, the casting director's preference order is: a1, a4, a3, a2

Give a stable matching of actors to roles and understudy positions for this problem.

2.2 Reducing THX to SMP

Give a clear and correct reduction from THX to SMP. Be sure to describe both how to convert any instance
of THX to an instance of SMP and how to convert the corresponding solution to the SMP instance into a
solution to the original THX instance.

Ensure the rationale for your reduction is clear in your answer. (We are not asking for a proof of
correctness; think of it instead as documentation so we can understand the intention of your reduction.)

3 a Bag of Make Me Words

A standard part of text analysis�for machine learning, machine translation, sentiment analysis, and so
on�is transforming a document into a �bag of words� representation. A �bag of words� is a data structure
that maps the unique words in the document to the number of times each one appears. For example, the
phrase �make me a hot dog, a chili dog, and a bag of words� would become a `bag' like: [a:3, and:1, bag:1,
chili:1, dog:2, hot:1, make:1, me:1, of:1, words:1], with each word and its number of appearances. (We put
the words in sorted order, but that's not necessary.) Note that the phrase has 13 words total but only 10
unique words (because �a� is repeated twice and �dog� once in the original phrase).

Speci�cally, you want to create an algorithm that�given a list of words W containing m words total but
only n unique words, where n ≤ m�produces a complete list of tuples (pairs) of words and their numbers
of occurrences. The result should have n entries (exactly one for each unique word) and the total of the
numbers of ocurrences across all entries should be m, but these entries can be in any order.

Most approaches we consider will use hash tables. For our purposes, such a hash table supports 6
operations. Here they are described for a standard hash table using chaining:

ConstructHashTable(e) creates and returns a hash table of size e. (The hash table will be empty,
but its underlying array will have e entries. Takes time proportional to e.)

Size(T) returns the number of keys in hash table T . (Takes constant time.)

Contains(T , k) returns true if hash table T contains an entry for the key k and false otherwise. (Takes
expected constant time, worst-case linear time.)

Insert(T , k, v) inserts key k with value v into hash table T . If k is already in T , overwrites its value
with v. (Takes expected constant time, worst-case linear time.)

Find(T , k) �nds key k in hash table T and returns the value associated with it. If k is not in T , produces
an error instead. (Takes expected constant time, worst-case linear time.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Entries(T) returns a list of all the key/value pairs in hash table T . (If the table currently has n keys
(i.e., Size(T) = n) and its underlying array has e entries, this takes time proportional to n + e.)

3.1 Making a Hash of the Bag

We're going to consider an approach that uses a standard hash table using chaining. Here is the planned
approach:

procedure ConvertToBag(W)
T ← ConstructHashTable(|W |)
for each word w in W do

cw ← Find(T , w)
Insert(T , w, cw + 1)

end for
return Entries(T)

end procedure

This algorithm has a small bug.

1. Give the shortest possible input W we could pass to ConvertToBag to illustrate the bug. (Sub-
stantial partial credit is available for �almost-shortest� answers.)

2. Indicate what the implementation of ConvertToBag above does and also what a correct impemen-
tation should do for your input.

3. Fix the bug in the pseudocode above.1

3.2 Asymptotic Bound

Here is a correct approach to this problem using a standard hash table with chaining:

procedure ConvertToBag(W)
T ← ConstructHashTable(|W |) . |W | is likely bigger than we need but not incorrect.
for each word w in W do

if Contains(T , w) then
cw ← Find(T , w)
Insert(T , w, cw + 1)

else
Insert(T , w, 1)

end if
end for
return Entries(T)

end procedure

Give and brie�y justify�including annotating the algorithm above to indicate how each part contributes
to your bound�a good asymptotic bound on the worst-case runtime of a call to ConvertToBag in
terms of m�the length of W , i.e., m = |W |�and n�the number of unique words in W .

3.3 Some Do and Others Trie

A trie is a tree data structure for storing key/value pairs where a key can be represented as a word (a
string of letters). The trie has a �xed alphabet, like the 26 letters of the English alphabet. The root
node of the trie represents the empty string. Each node stores a list of child pointers, one for each letter
in the alphabet. Each node that represents a complete word stores the value associated with that word.

1Only for the quiz, not required for the assignment.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

(Practically speaking, nodes that don't represent complete words store some kind of �null� for their value
indicating that no complete word ends at that node.)

For example, here is a trie that represents the bag of words [a:3, and:1, bag:1, chili:1, dog:2, hot:1,
make:1, me:1, of:1, words:1]:

We've shaded the leftmost path in this trie. The �rst shaded node under the root represents the word
�a�, which appears 3 times. The bottom node along that shaded path represents the word �and� (because
we follow pointers from the root labelled �a�, �n�, and then �d� to reach it), which appears 1 time. The word
�an� wasn't in our bag, and thus the second node along the path has no value.

1. Alter the sketch above to add the following to the trie:

� add the key �do� with value 4

� add the key �chime� with value 2

2. We described an upper-bound on the worst-case runtime of operations on the hash tables in terms
of the number of keys stored in the table. That's not the most convenient variable to describe the
runtime of operations on the trie, however. In terms of what quantity (variable) do operations on the
trie run in worst-case linear time?

3. [WORTH 1 BONUS POINT ON THE ASSIGNMENT AND COURSE; NOT RE-
QUIRED OR GRADED FOR THE QUIZ.]We can, however, give a lower-bound (an Ω bound)
on the worst-case runtime of operations on a trie in terms of just the number of keys stored in the
trie. Give and brie�y explain the bound.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Save the Last Dance for Someone Other Than Me
	A First Step
	Definitely Not the Two-Step
	Almost the Two-Step

	THX 1138
	Small Example
	Reducing THX to SMP

	a Bag of Make Me Words
	Making a Hash of the Bag
	Asymptotic Bound
	Some Do and Others Trie

