
Gradescope #:

The Master Theorem For a recurrence like T (n) = aT (nb) +f(n), where a ≥ 1 and b > 1, the Master

Theorem states three cases:

1. If f(n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If for some constant k ≥ 0, f(n) ∈ Θ(nc(log n)k) where c = logb a, then T (n) ∈ Θ(nc(log n)k+1).

3. If f(n) ∈ Ω(nc) where c > logb a and af(nb) ≤ kf(n) for some constant k < 1 and su�ciently large

n, then T (n) ∈ Θ(f(n)).

1

Gradescope #:

1 Debug-and-Conquer

Your friend proposes a divide-and-conquer approach to compute a minimum spanning tree of a connected

graph G = (V,E). The helper function

{G_1, G_2} = subgraphs(G)

takes the graph G = (V,E) and partitions the vertices into two graphs G1 = (V1, E1) and G2 = (V2, E2)
such that G1 and G2 are both connected and |V1| and |V2| di�er by at most 1.

DC_MST(G = (V, E)):

\\ Assume that G is a connected graph

\\ Base cases:

if |V| = 1: \\ 1 vertex, no edges

return NONE

if |E| = 1: \\ 1 edge, 2 vertices

return E

{G_1, G_2} = subgraphs(G)

MST_1 = DC_MST(G_1)

MST_2 = DC_MST(G_2)

let e = the minimum-weight edge connecting G_1 and G_2

return [MST_1, e, MST_2]

We'll start by analyzing the runtime of this algorithm. Assume that the subgraphs function runs in

O(n + m) time, where n = |V | and m = |E|.

1. We'll �nd it helpful to consider the performance of this algorithm in the best and worst cases.

(a) The best case for this algorithm is a particular (simple and common) type of connected graph.

What type of connected graph yields the best-case runtime? VERY brie�y justify your answer.

(b) What type of connected graph yields the worst-case runtime? VERY brie�y justify your answer.

2

Gradescope #:

2. (a) Give and brie�y justify a good asymptotic lower bound on the best-case runtime of this algorithm

in terms of n.

(b) Give and brie�y justify a good asymptotic upper bound on the worst-case runtime of this algo-

rithm in terms of n.

3. Does this algorithm always generate a minimum spanning tree? Justify your answer.

3

	Debug-and-Conquer

