The Master Theorem For a recurrence like $T(n)=a T\left(\frac{n}{b}\right)+f(n)$, where $a \geq 1$ and $b>1$, the Master Theorem states three cases:

1. If $f(n) \in O\left(n^{c}\right)$ where $c<\log _{b} a$ then $T(n) \in \Theta\left(n^{\log _{b} a}\right)$.
2. If for some constant $k \geq 0, f(n) \in \Theta\left(n^{c}(\log n)^{k}\right)$ where $c=\log _{b} a$, then $T(n) \in \Theta\left(n^{c}(\log n)^{k+1}\right)$.
3. If $f(n) \in \Omega\left(n^{c}\right)$ where $c>\log _{b} a$ and $a f\left(\frac{n}{b}\right) \leq k f(n)$ for some constant $k<1$ and sufficiently large n, then $T(n) \in \Theta(f(n))$.

1 Debug-and-Conquer

Your friend proposes a divide-and-conquer approach to compute a minimum spanning tree of a connected graph $G=(V, E)$. The helper function
\{G_1, G_2\} = subgraphs(G)
takes the graph $G=(V, E)$ and partitions the vertices into two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ such that G_{1} and G_{2} are both connected and $\left|V_{1}\right|$ and $\left|V_{2}\right|$ differ by at most 1 .

```
DC_MST(G = (V, E)):
    \\ Assume that G is a connected graph
    \\ Base cases:
    if |V| = 1: \\ 1 vertex, no edges
        return NONE
    if |E| = 1: \\ 1 edge, 2 vertices
        return E
    {G_1, G_2} = subgraphs(G)
    MST_1 = DC_MST(G_1)
    MST_2 = DC_MST(G_2)
    let e = the minimum-weight edge connecting G_1 and G_2
    return [MST_1, e, MST_2]
```

We'll start by analyzing the runtime of this algorithm. Assume that the subgraphs function runs in $O(n+m)$ time, where $n=|V|$ and $m=|E|$.

1. We'll find it helpful to consider the performance of this algorithm in the best and worst cases.
(a) The best case for this algorithm is a particular (simple and common) type of connected graph. What type of connected graph yields the best-case runtime? VERY briefly justify your answer.
(b) What type of connected graph yields the worst-case runtime? VERY briefly justify your answer.
2. (a) Give and briefly justify a good asymptotic lower bound on the best-case runtime of this algorithm in terms of n.
(b) Give and briefly justify a good asymptotic upper bound on the worst-case runtime of this algorithm in terms of n.
3. Does this algorithm always generate a minimum spanning tree? Justify your answer.
