
Gradescope #:

The Master Theorem For a recurrence like T (n) = aT (nb) +f(n), where a ≥ 1 and b > 1, the Master

Theorem states three cases:

1. If f(n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If for some constant k ≥ 0, f(n) ∈ Θ(nc(log n)k) where c = logb a, then T (n) ∈ Θ(nc(log n)k+1).

3. If f(n) ∈ Ω(nc) where c > logb a and af(nb) ≤ kf(n) for some constant k < 1 and su�ciently large

n, then T (n) ∈ Θ(f(n)).

1

Gradescope #:

1 I'm a Lumberjack (And I'm Okay)

Your task is to design algorithms to solve the following problems. For full credit, your algorithm must run

in logarithmic time.

1.1 Root-�nding

Given a positive number n and a (user-speci�ed) error tolerance e, you want to approximate the square

root of n to within error tolerance e. Speci�cally, you want to return an x ≈
√
n that satis�es |x2−n| ≤ e.

For example, to compute the square root of n = 2 with e = 0.01, an acceptable answer would be x = 1.414,
because 1.4142 = 1.999396. Note that x = 1.415 is also acceptable, as 1.4152 = 2.002225, but you only

need to return a single answer.

Assume that you can't perform any arithmetic functions other than addition, subtraction, multiplication,

and division.

1. Write pseudocode for an e�cient algorithm to solve this problem.

2

Gradescope #:

2. Brie�y justify a good asymptotic bound on the runtime of your algorithm in terms of n (i.e., give a

runtime in terms of n assuming a �xed value of e).

3

	I'm a Lumberjack (And I'm Okay)
	Root-finding

