The Master Theorem For a recurrence like $T(n)=a T\left(\frac{n}{b}\right)+f(n)$, where $a \geq 1$ and $b>1$, the Master Theorem states three cases:

1. If $f(n) \in O\left(n^{c}\right)$ where $c<\log _{b} a$ then $T(n) \in \Theta\left(n^{\log _{b} a}\right)$.
2. If for some constant $k \geq 0, f(n) \in \Theta\left(n^{c}(\log n)^{k}\right)$ where $c=\log _{b} a$, then $T(n) \in \Theta\left(n^{c}(\log n)^{k+1}\right)$.
3. If $f(n) \in \Omega\left(n^{c}\right)$ where $c>\log _{b} a$ and $a f\left(\frac{n}{b}\right) \leq k f(n)$ for some constant $k<1$ and sufficiently large n, then $T(n) \in \Theta(f(n))$.

1 I'm a Lumberjack (And I'm Okay)

Your task is to design algorithms to solve the following problems. For full credit, your algorithm must run in logarithmic time.

1.1 Array-chopping

An arithmetic array is one whose elements form an arithmetic sequence, in order - i.e., they're arrays of the form

$$
A=\left[a_{1}, a_{1}+c, a_{1}+2 c, \ldots, a_{1}+(n-1) c\right],
$$

where A has length n (for $n \geq 2$). You're given an arithmetic array with one element missing from somewhere in the middle (i.e., it's not the first or last element that's been removed).

For example, the missing number in $[3,6,12,15,18]$ is 9 . The missing number in $[1,15,22,29,36]$ is 8 .

1. Describe a way to calculate c in constant time.
2. Design an algorithm to efficiently find the missing number in the array.
3. Briefly justify a good asymptotic runtime of your algorithm.
