
CPSC 320 Sample Soln: Memoization and Dynamic Programming,

Part 2

March 1, 2017

1 If I Had a Nickel for Every Time I Computed That

1. Rewrite CCC, this time storing�which we call �memoizing�, as in �take a memo about that��each

solution as you compute it so that you never compute any solution more than once (for a given

call to CCC).

SOLUTION: Inline below:

CCC(n):

Create a new array Soln of length n // using 1-based indexing

Initialize each element Soln[i] for 1 <= i <= n to: _-1_ // or any other "flag" value

Return CCCHelper(n, Soln)

CCCHelper(n, Soln):

If n < 0:

Return infinity

Else, If n = 0:

Return _0_

Else, n > 0:

If (Soln[n] == -1): // i.e., if we have not stored the answer for n

// Compute and store the answer

Soln[n] = min(CCCHelper(n-25, Soln) + 1,

CCCHelper(n-10, Soln) + 1,

CCCHelper(n-1, Soln) + 1)

// By this point, we're guaranteed to have the answer stored.

Return Soln[n]

2. Consider this portion of the recursion tree for CCCHelper called on 81, where two calls to CCCHelper

with the argument 55 are italicized:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


Since we draw recursion trees with the �rst recursive call on the left, the left subtree �nishes before the

middle, which �nishes before the right. Therefore, the left-hand 55 node is the �rst call to CCCHelper

with the value 55. The right-hand 55 node is one (of many!) calls to CCCHelper with the value of 55

that happen after that �rst call.

Give a Θ-bound on the runtime of calls to CCCHelper like the right-hand one that are on a value x
(where 1 ≤ x ≤ n) and are not the �rst call to CCCHelper on that value.

SOLUTION: Since 1 ≤ x ≤ n, we'll hit the �else� case at the bottom of CCCHelper. Since this is

not the �rst call for this value of x, we've already stored the result in Soln. Therefore, we do constant

work checking that x 6< 0 and x 6= 0 to reach the �else� case and constant work checking that we've

stored the solution, and constant work returning it.

The runtime is in Θ(1)

3. Not counting the cost of any other call's �rst computation, give a good Θ-bound on the runtime of

calls like the left-hand one that are the �rst computation of CCCHelper on a value x.

SOLUTION: In the �rst computation, we do the same constant work as before except we also take

the minimum of the three recursive calls. Any of those recursive calls that are not �rst calls take

constant time (per our answer to the previous part). Any of those recursive calls that are �rst calls

aren't counted in this analysis.

So, a �rst call not counting its recursive calls' �rst computation takes Θ(1) time.

It may seem strange not to count other calls' �rst computations, but this is very similar to when we

do the analysis of QuickSort and label a node with cn work (with work shown in black in this tree):

That cn work is the work done at that node, not counting the work done by its recursive calls. Why

are we allowed to do that? Because we later sum up all the work at all the levels, which �counts back

in� the work we ignored earlier.

So, we just need to make sure we justify that we counted all the work before we're done.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. Give a Θ-bound on the total cost of all these �rst computations. (That is, sum up the �rst compu-

tations.)

SOLUTION: x can range from 1 to n, which is n values. There is at most one �rst call to each of

these values of x. So, the total work is Θ(n).

5. Explain why this Θ-bound also bounds the total runtime of the algorithm. (That is, why do we not

also need to include the cost of computations after the �rst one?)

SOLUTION: We need to show that we've accounted for every node in the recursion tree.

We've accounted for each ��rst call� to CCCHelper on any value 1 ≤ x ≤ n by adding them all up.

(Some �rst calls to CCCHelper make recursive subcalls to CCCHelper that are also �rst calls. We

didn't count those recursive subcalls when �nding the runtime of the call itself, but by adding up all

possible �rst calls, we did count these.)

What about the second and later calls? No second and later call makes any recursive calls of its own;

instead, it just returns the stored value. Therefore, every second and later recursive call is called by

a �rst call. We counted that work in our analysis of the �rst call.

Thus, we've counted every �rst call and every second and later call, which is all the calls.

(Note: we never explicitly discussed base cases, but even the �rst call on the base case takes constant

time.)

2 Growing from the Leaves

The technique from the previous part is called �memoization�. Turning it into �dynamic programming� just

requires changing the order in which we consider the subproblems.

1. Finish this formula for Soln(i) in terms of smaller entries in Soln. (This is also a recurrence, just

like the ones we use to measure performance!) Make it as similar as you can to your recursive code

above.

SOLUTION: Inline below.

Soln(i) = infinity for i < 0

Soln(0) = 0

Soln(i) = min(Soln(i-25)+1, Soln(i-10)+1, Soln(i-1)+1) otherwise

2. If we were to store this in the Soln array, which entries of the array need to be �lled in before we're

ready to compute the value for Soln[i]?

SOLUTION: Entries i− 25, i− 10, and i− 1.

3. Give a simple order in which we could compute the entries of Soln so that all previous entries needed

are already computed by the time we want to compute a new entry's value.

SOLUTION: In this case, we need entry i− 1 before we can compute entry i; so, our only option is

to compute the entries in order from smallest to largest: 1, 2, . . . , n− 1, n.

4. Take advantage of this ordering to rewrite CCC without using recursion:

SOLUTION: Inline below:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


// Note: It's handy to pretend Soln has 0 and negative entries.

// We use SolnCheck to do that.

SolnCheck(Soln, i):

If i < 0: Return _infinity_

Else If i = 0: Return _0_

Else: Return Soln[i]

CCC(n):

Create a new array Soln of length n + 1 // using 1-based indexing

For i = _1 to n_:

Soln[i] = the _minimum_ of:

_Soln[i-25] + 1__,

_Soln[i-10] + 1_, and

_Soln[i-1] + 1_

Return Soln[n]

5. Both the dynamic programming and memoized versions of CCC run in the same asymptotic time.

Asymptotically in terms of n, how much memory do these versions of CCC use?

SOLUTION: They both store an entry in Soln for each value from 1 to n. Assuming each entry

takes one �unit� of memory, that's O(n) memory.

6. Imagine that you only wanted the number of coins returned from CCC. In the dynamic programming

version how much of the Soln array do you really need at one time? If you take advantage of this,

how much memory does it use, asymptotically?

SOLUTION: In the dynamic programming version, we refer back to only the last 25 entries at any

given entry. So, we could keep a record of only those most recent 25 entries and update it (discarding

the oldest entry) each time we compute a new entry. (A circular array�as in an array-backed queue

implementation�might be a handy way to implement this.)

In that case, we'd be using a constant number of �units� of memory: O(1).

3 Foreign Change

Design a new version of CCC so that it handles foreign currencies where you receive the target amount n
and an array of coin values [c1, c2, . . . , ck]. Assume that the penny is always available. (So, for pennies,

dimes, and quarters, the array would look like [10, 25].)
Analyse the runtime of your algorithm in terms of n and k.
TAKE IT STEP BY STEP! That means to write trivial and small examples, describe the input and

output, design an ine�cient recursive version, memoize it, and transform that into a dynamic programming

solution.

SOLUTION: Our new CCC takes the array of k coins and a target value n. If k = 0, then the problem

is trivial (we need n pennies). If n = 0, then we need no coins.

Here are a couple small examples:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


� [7, 8], 30: 2 �eights� and 2 �sevens� make 30 cents in change. (This one would not work correctly with

our greedy algorithm.)

� [10, 100, 200], 333: 1 �two hundred�, 1 �one hundred�, 1 �ten�, and 3 pennies makes 333 cents in change.

(This one would work correctly with our greedy algorithm, since we can see that any solution besides

greedy can trade in multiple coins for a single coin used in greedy.)

We've already largely described the input above. We'll just produce the number of coins as output for

now.

Here's an ine�cient algorithm:

FC(c = [c1, c2, ..., ck], n):

If n < 0:

Return infinity

Else If n = 0:

Return 0

Else:

Let best = n // n pennies

For i = 1 to k:

Let with_ci = FC(c, n-c[i]) + 1

If with_ci < best:

best = with_ci

Return best

This solution has exponential runtime once k ≥ 2 (e.g., with c = [7, 8]).
Memoizing this just requires adding a table. Since the c parameter never changes, we don't need to

worry about it in our table, and the table is still one-dimensional with n entries:

FC(c = [c1, c2, ..., ck], n):

Create a new array Soln of length n // using 1-based indexing

Initialize each element Soln[i] for 1 <= i <= n to: -1

Return FCHelper(Soln, c, n)

FCHelper(Soln, c = [c1, c2, ..., ck], n):

If n < 0:

Return infinity

Else If n = 0:

Return 0

Else:

If Soln[n] < 0:

Let best = n // n pennies

For i = 1 to k:

Let with_ci = FCHelper(Soln, c, n-c[i]) + 1

If with_ci < best:

best = with_ci

Soln[n] = best

Return Soln[n]

This memoized solution takes O(k) time to �ll out each table entry the �rst time we call it on a particular

value (not counting �rst subcalls). There are n such calls. So, it takes O(kn) time total. It uses O(n)
�units� of table spaces.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


We can convert this to dynamic programming in the same way we did for CCC. As an illustration, we

won't use the SolnCheck helper here, but that would be a great approach as well.

FC(c = [c1, c2, ..., ck], n):

Create a new array Soln of length n // using 1-based indexing

For i = 1 to n:

Let best = i // n pennies

For j = 1 to k:

// Since we didn't use SolnCheck, we have to be

// a bit careful about negative values here.

Let n' = i - c[j]

Let with_cj = infinity

If n' >= 0:

with_cj = Soln[n'] + 1

If with_cj < best:

best = with_cj

Soln[i] = best

Return Soln[n]

The dynamic programming solution has the same asymptotic characteristics as the memoized solution

but will probably have lower constant factors on its runtime in practice. The DP version also facilitates

truncating our Soln table (which need only be as long as the maximum element of c).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	If I Had a Nickel for Every Time I Computed That
	Growing from the Leaves
	Foreign Change

