
CPSC 320 Notes: The Futility of Laying Pipe, Part 2

March 19, 2017

Reminder: An instance of the Steiner Problem (SP) is an undirected graph G = (V,E) and a subset

S ⊆ V of the vertices to which we must deliver water. A solution to the instance is a subset E′ ⊆ E of

the edges which connects all vertices in S (and perhaps some in V ). The best solution is the one with the

fewest edges. In the decision-variant, we add a variable k to an instance and ask whether a solution with

at most k edges exists.

1 SP is NP-Complete

We've already shown that SP ∈ NP. To show it's NP-complete, we need to also show that it is NP-hard;

that is, that it's at least as hard as every other problem in NP. We'll use 3-SAT to help us, since we already

know that 3-SAT is at least as hard as every other problem in NP.

1. Which of these would show that SP is at least as hard as 3-SAT: reducing from SP to 3-SAT in

polynomial time or reducing from 3-SAT to SP in polynomial time? (Hint: Checking whether a list

of n numbers is in sorted order is a simple problem that can be solved in polynomial time, which

we'll call SORTED. There is a (silly, trivial) polynomial-time reduction one direction or the other

between SORTED and 3-SAT. Whichever direction works easily for that is the wrong direction, since

SORTED is only NP-complete if P=NP.)

2. Here is a sketch of a �variable gadget� to help with our reduction. How can we �shade in� (put in S)
some of these vertices and choose an appropriate k (maximum number of edges in the solution) to

enforce 3-SAT's choice that x or x is true but not both?

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3. Draw a graph with four variable gadgets (x1, x2, x3, and x4), all sharing a single �hub� node. (Be

sure your layout still enforces choosing either true or false but not both for each of the four variables,

yet allows all 16 possible combinations of their truth values.)

4. Now, �nd a way to add one or more nodes and edges to your graph and choose a k in order to

represent the clause (x1 ∨ x2 ∨ x3) and enforce that: at least one of x1, x2, and x3 is true and also

(still) each variable is either true or false but not both. (x4 isn't in this clause, which is �ne. In most

3-SAT problems, not all variables are in all clauses.)

5. Give a complete reduction from 3-SAT to SP such that the answer to the SP instance you produce is

YES if and only if the answer to the original 3-SAT instance is YES.

6. Analyse the runtime of your reduction (to show that it takes polynomial time).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	SP is NP-Complete

