Do Be So Naïve

March 14, 2017

Consider the following recurrence:

$$
A(i, j)= \begin{cases}1 & \text { if } i=1 \\ A(i-1, j+1)+A(i-1, j) & \text { otherwise }\end{cases}
$$

1. Give naïve recursive code that computes the value of $A(n, 1)$ for $n \geq 1$.
2. Give an asymptotic bound on the runtime and memory use of a memoized version of this algorithm. (Assume that storing one value of A takes constant space.)
3. Write clear (pseudocode) nested loops to specify an order could solve the subproblems to convert this to a dynamic programming solution. (There is no need to write the initialization code for the function or the body that would actually solve the problem.)
