CPSC 320 2017W1: Assignment 2

September 27, 2017

WARNING: We reserve the right to add some questions to this assignment after the midterm exam.

Please submit this assignment via GradeScope| at https://gradescope.com. Be sure to identify every-
one in your group if you're making a group submission (which we encourage!).

Submit by the deadline Friday 13 Oct at 10PM. For credit, your group must make a single submission
via one group member’s account, marking all other group members in that submission using GradeScope’s
interface. Your group’s submission must:

1

Be on time.

Consist of a single, clearly legible file uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via ITEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,
very clearly and prominently indicate which problem is answered where!

Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. (No names are necessary.)

Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course staff." (Go read those guidelines!)

Include at the start of the document your outside-group collaborators’ ugrad.cs.ubc.ca e-mail ad-
dresses. (Be sure to get those when you collaborate!)

eXtreme True And/Or False

Each of the following problems presents a scenario in a graph and a statement about that scenario. For
each one, indicate by filling in the appropriate circle whether:

1.

2.

The statement is ALWAYS true, i.e., true in every graph matching the scenario.

The statement is SOMETIMES true, i.e., true in some graph matching the scenario but also false
in some such instance.

. The statement is NEVER true, i.e., true in none of the graphs matching the scenario.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

Recall: |V| =n,|E| = m. A vertex’s degree is the number of edges incident on it. For directed graphs, a
vertex’s in-degree is the number of edges ending at the vertex and the out-degree is the number starting
from it. A path of length k is a list of £+ 1 vertices with an edge between each consecutive pair of vertices.
A simple path repeats no vertex. A cycle is a path that starts and ends at the same vertex. A simple cycle
repeats no other vertex.

1.

1.1

1.2

Scenario: A directed graph with n > 2. Statement: The out-degree of each vertex is larger than
its in-degree.

(O ALWAYS
(O SOMETIMES
(O NEVER

. Scenario: A non-empty DAG with a single, unique topological ordering. Statement: Any two

different vertices in the graph have exactly one edge between them (i.e., an edge going one direction
or the other, but not both edges).

O ALWAYS
O SOMETIMES
(O NEVER

. Scenario: A strongly-connected, directed graph with n > 2. Statement: A simple cycle of length

n exists.

O ALWAYS

O SOMETIMES
O NEVER

. Scenario: A connected, undirected graph with n > 2. Statement: A path—not necessarily simple—

of length 2n exists that visits every node.
O ALWAYS

O SOMETIMES

O NEVER

Quiz Solution

. SOLUTION: NEVER

. SOLUTION: SOMETIMES
. SOLUTION: SOMETIMES
. SOLUTION: ALWAYS

Assignment

On the assignment, for each of the problems above, please briefly justify the answer.

Justify an ALWAYS answer by giving a small instance that fits the scenario for which the statement
is true and then briefly sketching the key points in a proof that the statement is true for all instances that
fit the scenario.

Justify a NEVER answer by giving a small instance that fits the scenario for which the statement is
false and then briefly sketching the key points in a proof that the statement is false for all instances that
fit the scenario.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Justify a SOMETIMES answer by giving two small instances that fit the scenario: one for which the
statement is true and one for which the statement is false.

2 0O’d to a Pair of Runtimes

The pairs of functions below represent algorithm runtimes on an undirected, connected graph with n
vertices and m edges. ASSUME m > 0. For each pair, fill in the circle next to the best choice of:

LEFT: the left function is big-O of the right, i.e., left € O(right)

RIGHT: the right function is big-O of the left, i.e., right € O(left)

SAME: the two functions are © of each other, i.e., left € ©(right)

INCOMPARABLE: none of the previous relationships holds for all allowed values of n and m.

Do not choose LEFT or RIGHT if SAME is true. The first one is filled in for you.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Left Function Right Function Answer

n n2 LEFT

n+3 m O LEFT

O RIGHT

O SAME

O INCOMPARABLE
nlgn m O LEFT

O RIGHT

O SAME

O INCOMPARABLE
n? 3m+1gn O LEFT

O RIGHT

O SAME

O INCOMPARABLE
m2lgn on O LEFT

O RIGHT

O SAME

O INCOMPARABLE
9log1om on O LEFT

O RIGHT

O SAME

O INCOMPARABLE
S 1 O LEFT

O RIGHT

O SAME

O INCOMPARABLE

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2.1 Quiz Solution

Left Function Right Function Answer

n n? LEFT

n—+3 m LEFT

nlgn m INCOMPARABLE
n? 3m+lgn RIGHT

m2lgn 2" LEFT

2logiom on LEFT

= 1 RIGHT

2.2 Assignment

On the assignment:

e For your own reference (not graded, but crucial), indicate the maximum and minimum values of m
in terms of n for the scenario described in the problem.

e Give a good ©-bound on each of the following functions from above:

1. 3m+1gn
2. m?lgn
3. 9logiom
455

Notes:

— Where possible, use logs base 2 (i.e., 1g).

— If a decimal number like 4.48 is important, round to the tenths place, like 4.5. (Technically, that
will make your © bound incorrect, but we won’t worry about that for this problem.)

— If possible, express your bound in terms of a single variable m or n rather than both m and n.

e For the one problem whose answer is INCOMPARABLE, briefly justify why neither function is
big-O of the other.

3 Slapping on a Bandwidth-Aid

Recall: EDP’s input is an undirected, unweighted graph G = (V, E) plus a set of distribution points
D = {di,da,...,d} each a vertex in V and a single aid location a € V that is not in D. The output is
the number of non-overlapping paths leading from some d; to a. Paths may lead from different distribution
points.

You have an efficient algorithm to solve the "network bandwidth problem" (NBP). NBP’s input is a
weighted, directed graph G = (V, E) (where the tuple (u,v,w) € FE represents a directed edge from u
to v with integer weight w) and designated source and target vertices s and ¢. A node in the graph is a
server and an edge is a network link between servers, weighted by its bandwidth—the maximum number
of bytes per second the link can carry. (A weight of oo is also allowed, indicating unlimited bandwidth.)

NBP’s output is the maximum bandwidth that can be carried from s to t.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Notes: The bandwidth on any link cannot exceed that link’s weight. The bandwidth coming out of s is
unlimited but none can go in, while unlimited bandwidth can go into ¢ but none can come out. Otherwise,
for any node v, the bandwidth coming into the node must equal the bandwidth coming out. Assume only
integral (or infinite for links with weight co) amounts of bandwidth can be used on each edge.

Fill in the boxes to complete this reduction that solves EDP using NBP:

Convert an instance of EDP to an instance of NBP:

1. For each node v € Vgpp, generate in VNgp.

2. For each undirected edge (u,v) € Fgppp, generate

in Enpp.

3. Generate one additional vertex v’ in Vypgp.

4. For each distribution point d € D, generate

5. Finally, let s = and t =

Convert an instance of NBP to EDP:

Let the solution to EDP be

3.1 Quiz Solution
First, two clarifications:

1. Paths being "non-overlapping" means they do not share edges. (They must share at least one
vertex, the aid location to reach. They may also share other vertices, but they must use different

edges between the vertices.)
2. A single distribution point can be the source of many disjoint paths to the aid location.

If you made different assumptions that are reasonable in the given context of the problem and
led you to an alternative, correct solution, we intend to give you full credit for your quiz solution. (As
always, you can object to our grading once we return it if you have concerns. Please don’t object before

you see your grade! @)
Now, on to our solution, which respects these clarifications.
Convert an instance of EDP to an instance of NBP:

1. For each node v € Vgpp, generate a corresponding node v in Vypp.
2. For each undirected edge (u,v) € Egpp, generate two edges: (v,u,1), (u,v,1) in Expp.

3. Generate one additional vertex v’ in Vypgp.

4. For each distribution point d € D, generate an edge (v',d,00) € Enpp.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5.

Finally, let s = ¢’ and t = a.

Convert an instance of NBP to EDP:

Let the solution to EDP be the solution to NBP. (Where a solution of oo means that the target is also
a distribution point, in which case, it’s not clear what a correct solution is anyway.)

3.2

Assignment

(Be sure to read clarifications in the quiz section above.) Now, consider this incorrect reduction from
EDP to NBP.

Convert an instance of EDP to an instance of NBP:

For each node v € Vgpp, generate a corresponding node v in Vypp.
For each undirected edge (u,v) € Egpp, generate two edges: (v,u, 1), (u,v,1) in Expp.
Generate one additional vertex v’ in Vygp.

For each distribution point d € D, generate an edge (v',d,1) € Expp.

Ot W N

Finally, let s = and t = a.

Convert an instance of NBP to EDP:
Let the solution to EDP be the solution to NBP.

Now, do the following;:

1.

Give a good counterexample to the correctness of this reduction. (A drawing of the counterexample
instance is an excellent way to express it.)

. Give the instance of NBP produced by the reduction from your counterexample. (Again, a drawing

works well.)

. Give and very briefly explain the incorrect solution to the original instance produced by the reduction

(paired with an arbitrary solution to the underlying problem).

. Give and very briefly explain the correct solution to the original instance.

4 Milking Your Territory

Suppose the leaders of a town have decided that they should hire some ice cream vendors to ride bicycles
around town, selling their goods to the children of the community. Your task is to help the leaders decide
how many vendors to hire. To help us solve this problem, we have the following definitions:

The town consists of a set of homes and a set of sidewalks, on which the vendors will ride.
Each sidewalk connects a pair of homes.

Two homes hy and hg are in the same market if there is a way to get from h; to he riding only on
sidewalks whose lengths are less than 100m each. (Bicycle vendors don’t like to ride very far before
they take a break.)

Each market will be served by exactly one vendor.

Now, answer the following questions:

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1. The number of vendors can be found most effciently by a modification of which of the following algo-
rithms? Fill in the boxes next to ALL correct answers. (Several could be the foundation for a solution;
select only those that solve the problem the fastest and with the least unnecessary functionality.)

[] HeapSort

L] Dijkstra’s

[] Kruskal’s Minimum Spanning Tree algorithm
[] Prim’s Minimum Spanning Tree algorithm
L BFS

[IDFs

2. Briefly describe using pseudocode (or simple C+4+/Java- or Racket-style code) two changes you
would make to the algorithm:

e change 1:

e change 2:

3. Suppose each house is connected to at most 5 other homes by sidewalks. What is the running time
of your algorithm in terms of the number of houses H?

4.1 Quiz Solution
1. DFS and BFS

2. Here are the changes conceptually:
(a) An (unweighted) edge exists between two houses exactly when there is an edge (sidewalk) between
them in the original graph of weight less than 100 (distance less than 100m).
(b) Initialize the value L to 1. Then, repeat until all nodes are labelled in the following way:

i. Pick an arbitrary unlabeled vertex.
ii. Run DFS/BFS from that vertex, labeling all reachable nodes with L.

iii. Increment L.

3. O(h) (assuming a good implementation)

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4.2 Assignment

On the assignment, you’ll solve a related but different problem.

The algorithm above determined the appropriate number of vendors. With small modifications, it can
also label each home with an identifier that indicates the market to which it belongs. Assume for this
problem that such a labelling already exists. Furthermore, assume that in the town from the original
problem, there is at least one path along sidewalks from each house to each other house in the
town, although some of the sidewalks on the path may be longer than 100m.

After hiring the appropriate number of vendors (i.e., one for each market), each of whom lives in some
house in the town, the leaders have to decide which vendor will sell in which market. The goal is to minimize
the total commuting distance of the vendors, where the commuting distance for a vendor to a market is
defined to be: the length of the shortest route from the vendor’s home to some home in a market. The town
leaders want to know which vendor should serve each market. (Note that some vendors’ home-to-market
routes may include sidewalks longer than the 100m limit, but we assume that vendors are OK with that
on their commute. They’ll walk their bikes if needed.)

We call this the Vendor Assignment Problem (VAP).

The following two problems will be instrumental in designing an algorithm to solve VAP. You should
assume that efficient solutions to each exist (and they do!).

All Pairs Shortest Path (APSP): takes as input a weighted graph G = (V, E) and returns a |V| x |V/|
matrix whose entries are 1) dist(u, v), the shortest distance from vertex u to vertex v, and 2) pred(u, v),
the second to last vertex on the shortest path from u to v.

Minimum Cost Bipartite Matching (MCBM): takes as input a bipartite graph G = (VUW, E) with
costs ce, Ve € F, and returns a perfect matching of least total cost if such a matching exists. Note
that sets V and W are disjoint, costs are non-negative, and |V| = |[W| = n.

Now solve the following problems:

1. Briefly explain why any scenario in which all vendors live in different markets might be considered a
"trivial instance".

2. Make a sketch that you believe illustrates a small but not trivial instance of the problem, and
augment the sketch with an optimal solution.

3. Give symbolic names to the quantities that matter in VAP, and use those names to describe both the
general form of an instance (including any constraints on what makes it valid) of the problem,
and the general form of a solution (including what makes a solution valid and good).

If you're looking for a format, consider the various problems (including APSP and MCBM) that we've
represented using symbolic names in this quiz/assignment (plus your textbook reading and our work
in class, of course!).

4. Now use clear pseudocode (or very very clear C++, Java, or Racket) to give an algorithm to solve
VAP given an instance of the original ice cream vendor problem that has been augmented with labels
for each house indicating its market.

You must make use of the APSP and MCBM algorithms in your solution, And they should make
your solution fairly compact and simple. (You can think of this as reducing VAP to a combination of
APSP and MCBM.)

For further reading on APSP and MCBM, seehttp://jeffe.cs.illinois.edu/teaching/algorithms/
notes/22-apsp.pdf, and http://theory.stanford.edu/"tim/w16/1/15.pdfl

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/22-apsp.pdf
http://jeffe.cs.illinois.edu/teaching/algorithms/notes/22-apsp.pdf
http://theory.stanford.edu/~tim/w16/l/l5.pdf
http://creativecommons.org/licenses/by/4.0/

	eXtreme True And/Or False
	Quiz Solution
	Assignment

	O'd to a Pair of Runtimes
	Quiz Solution
	Assignment

	Slapping on a Bandwidth-Aid
	Quiz Solution
	Assignment

	Milking Your Territory
	Quiz Solution
	Assignment

