Pre-Reading for Quiz 2

September 22, 2017

1 O'd to a Pair of Runtimes

We're thinking about asking a question like this on at least one of the quizzes.
The pairs of functions below represent algorithm runtimes on /SOME DATA STRUCTURE THAT WE'LL DEFINE WITH TWO PARAMETERS n and $\$ m \$ /$. ASSUME $m>0$. For each pair, fill in the circle next to the best choice of:

LEFT: the left function is big- O of the right, i.e., left $\in \mathrm{O}$ (right)
RIGHT: the right function is big- O of the left, i.e., right $\in \mathrm{O}$ (left)
SAME: the two functions are Θ of each other, i.e., left $\in \Theta$ (right)
INCOMPARABLE: none of the previous relationships holds for all allowed values of n and m.
Do not choose LEFT or RIGHT if SAME is true. The first one is filled in for you.

Left Function	Right Function	Answer
n	n^{2}	LEFT
$m \lg m$	$2 m \log m+3$	OLEFT
		ORIGHT
		OSAME
		INCOMPARABLE

2 Disaster Planning

We're thinking about asking at least one quiz question that references this problem.
The Emergency Distribution Problem (EDP) is defined as follows: A group of coastal locations is connected by various roads, each of which connects exactly two locations. At most one "emergencyhardened" road connects each pair of locations. In case of emergency, a set of these locations that are reachable by outside aid will be designated "distribution points". In this problem, we want to determine how many distinct (non-overlapping) paths lead to deliver aid to a particular location.

Formally, EDP's input is an undirected, unweighted graph $G=(V, E)$ plus a set of distribution points $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ each a vertex in V and a single aid location $a \in V$ that is not in D. The output is the number of non-overlapping paths leading from some d_{i} to a. (Paths may lead from different distribution points.)

