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AS BEFORE: We're given a complete, weighted, undirected graph G = (V,E) represented as an

adjacency list, where the weights are all between 0 and 1 and represent similarities�the higher the more

similar�and a desired number 1 ≤ k ≤ |V | of categories.
We de�ne the similarity between two categories C1 and C2 to be the maximum similarity between any

pair of nodes p1 ∈ C1 and p2 ∈ C2. We must produce the categorization�partition into k (non-empty)

sets�that minimizes the maximum similarity between categories.

Now, we'll prove this greedy approach optimal.

1. Sort a list of the edges E in decreasing order by similarity.

2. Initialize each node as its own category.

3. Initialize the category count to |V |.

4. While we have more than k categories:

(a) Remove the highest similarity edge (u, v) from the list.

(b) If u and v are not in the same category: Merge u's and v's categories, and reduce the category

count by 1.

1 Greedy is at least as good as Optimal

We'll start by noting that any solution to this problem partitions the edges into the "intra-category" edges

(those that connect nodes within a category) and the "inter-category" edges (those that cross categories).

1. Getting to know the terminology: Imagine we're looking at a categorization produced by our

algorithm in which the inter-category edge with maximum similarity is e.

Can our greedy algorithm's solution have an intra-category edge with lower weight than e? Either

draw an example in which this can happen, or sketch a proof that it cannot.
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2. Give a bound�indicating whether it's an upper- or lower-bound�on the maximum similarity of an

arbitrary solution in terms of any one of its inter-category edge weights. (That is, I tell you that

the solution has an inter-category edge with weight w. How much can you tell me so far about the

solution's overall "goodness"?)

3. Give a bound on the maximum similarity of a solution produced by the greedy algorithm in terms of

the weight of any one of the edges it considered in step 4(b).
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4. Consider an optimal solution O to an instance of the problem. Prove that its intra-category edges

cannot be a proper superset of greedy's intra-category edges (i.e., cannot be the same plus at least

one more intra-category edge).

You should assume that both O and the greedy algorithm produce valid solutions, i.e., partitions of

V into exactly k subsets. (That's clearly true for O since it's an optimal solution and not too hard

to prove for the greedy approach.)

5. Now, considering in decreasing order of weight whether each edge is inter- or intra-category, let e be
the �rst edge where the greedy solution di�ers from O. (If no such edge exists, then they have the

same set of categories, are the same solution, and so our greedy algorithm is optimal.) Let this edge

be e.

Use the result from the previous part to show that e cannot be inter-category in the greedy solution

but intra-category in O.

6. Continuing the previous part, we now know that e is intra-category in the greedy solution but inter-

category in O. Use your previous work to �nish the proof that the greedy solution is optimal (i.e., is

"at least as good" according to our metric as O).
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2 Challenge

1. We can also give an "exchange" argument starting: "Consider a greedy solution g and an optimal

solution O. If they're di�erent, then some edge (u, v) must be inter-category in O but intra-category

in g. In that case, we can make O more similar to g without decreasing O's goodness by. . ."
Finish the proof. (Warning: even if you select (u, v) more carefully, you may not just want to move

u into v's category or vice versa.)

2. Switching to MSTs:

(a) What does the "cut" property tell us if we partition the graph into a "cluster" of: an already

connected set of nodes, and everything else?

(b) Use this insight to create an e�cient algorithm somewhat similar to Kruskal's algorithm except

that it adds many edges to the MST-so-far at each step of the outer loop.

(c) Analyse the performance of your algorithm, including determining what data structures to use.

(Make each data structure as simple as possible while still obtaining the best bound rather than

making each as e�cient as possible.)
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