
CPSC 320 2017W1: Assignment 3

October 18, 2017

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify every-

one in your group if you're making a group submission (which we encourage!).

Submit by the deadline Friday 27 Oct at 10PM. For credit, your group must make a single submission

via one group member's account, marking all other group members in that submission using GradeScope's

interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to

the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.

Scanned documents will likely work well. High-quality photographs are OK if we agree they're

legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout

(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,

very clearly and prominently indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of

your team. (No names are necessary.)

� Include at the start of the document the statement: "All group members have read and followed

the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with

anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope

information) away, and (2) after a suitable break, my group created the assignment I am submitting

without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca e-mail ad-

dresses. (Be sure to get those when you collaborate!)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/


1 eXtreme True And/Or False

Pre-Reading: The Very Busy 3-D Printer

The CS department buys a single 3-D printer and wants to develop a scheduling algorithm for it. We'll

call their problem the Very Busy 3-D Printer Problem or VB3.

The input for a particular week is a list of n jobs for the printer. Each job is a pair of a positive integer

duration t of the job and non-negative integer deadline d for the job. Once started, a job must be run

to completion, which takes t minutes. To be useful, the job must be complete by the deadline d (also in

minutes from the start of the week).

The output is a schedule: a list of k ≤ n of the jobs along with a non-negative integer start time s for
each one, sorted in increasing order of start time. A valid schedule must ensure that no two jobs overlap

(i.e., no jobs i and j exist in the schedule such that si ≤ sj and si + ti > sj) and all jobs �nish on time

(si + ti ≤ di). Note that it is OK for a job's end time to match the next job's start time. The goal is to

schedule as many of the jobs as possible.

For example, the input (2, 5), (1, 3), (3, 4), (5, 15) represents four jobs. The �rst is of length 2 minutes

with a deadline 5 minutes from the "zero" time. The second job is only 1 minute long and has a deadline

3 minutes after the zero time. Etc.

The optimal solution to this instance includes three of the four jobs. One option�represented with

tuples of (s, t, d) start time, duration, and deadline�would be (0, 2, 5), (2, 1, 3), (8, 5, 15). That runs the 2
minute job right away, followed by the one minute job. Then, at minute 8, it runs the 5 minute job. This

would also be an optimal schedule with di�erent jobs and timing: (0, 1, 3), (1, 3, 4), (4, 5, 15).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


FILL IN YOUR UGRAD ID and read the problem statement on the previous page (relevant for all

but the �rst part). Then, follow the directions on this page.

Each of the following problems presents a scenario and a statement about that scenario. For each one,

indicate by �lling in the appropriate circle whether:

� The statement is ALWAYS true, i.e., true in every instance matching the scenario.

� The statement is SOMETIMES true, i.e., true in some instance matching the scenario but also false

in some such instance.

� The statement is NEVER true, i.e., true in none of the instances matching the scenario.

Problems:

1. Scenario: A simple graph with n ≥ 3. Statement: Any simple path that starts at an arbitrary

vertex v and ends at an arbitrary vertex u 6= v can be extended into a simple cycle by adding vertices

after u.

ALWAYS

SOMETIMES

NEVER

2. Scenario: An instance of VB3 with n ≥ 2. Statement: An optimal schedule ((s1, t1, d1), . . .) exists
in which s1 = 0 and for each subsequent pair of jobs in the schedule i and i+ 1, si + ti = si+1.

ALWAYS

SOMETIMES

NEVER

3. Scenario: An instance of VB3 with n ≥ 1. Statement: The job i with the maximum value of di− ti
is in some optimal solution to the instance.

ALWAYS

SOMETIMES

NEVER

4. Scenario: An instance of VB3 with n ≥ 1. Statement: This greedy algorithm produces an optimal

solution to the instance: Begin with an empty schedule and time marker m = 0. In increasing order

of job duration: if the next job i can be �nished in time (m + ti ≤ di), add it to the schedule with

start time m and then increase m by ti.

ALWAYS

SOMETIMES

NEVER

5. Scenario: An instance of VB3 with n ≥ 1 and with an optimal solution containing at least one

job. Statement: This greedy algorithm produces an optimal solution to the instance: Begin with

an empty schedule and time marker m = 0. In increasing order of job deadline: if the next job i can
be �nished in time (m+ ti ≤ di), add it to the schedule with start time m and then increase m by ti.

ALWAYS

SOMETIMES

NEVER

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


1.1 Quiz Solution

1. SOMETIMES

2. ALWAYS

3. ALWAYS

4. SOMETIMES

5. SOMETIMES

1.2 Assignment

On the assignment, for each of the problems above, please brie�y justify the answer.

Justify an ALWAYS answer by giving a small instance that �ts the scenario for which the statement

is true and then brie�y sketching the key points in a proof that the statement is true for all instances that

�t the scenario.

Justify a NEVER answer by giving a small instance that �ts the scenario for which the statement is

false and then brie�y sketching the key points in a proof that the statement is false for all instances that

�t the scenario.

Justify a SOMETIMES answer by giving two small instances that �t the scenario: one for which the

statement is true and one for which the statement is false.

IMPORTANT CAUTION: None of your example instances should critically rely on tie-breaking

behaviour to illustrate what they are meant to show. Ensure that you brie�y explain why each instance

�ts the scenario and makes the statement true or false, as needed.

2 Bestride the BST

We de�ne a size-weighted BST (wBST) to be a binary search tree in which each node also has a weight: a

count of the number of nodes in the subtree rooted at that node. A leaf (a single node with empty subtrees)

has weight 1, a node with only one subtree which is itself a leaf has weight 2, a node with two leaves as

subtrees has weight 3, etc.

The following binary tree is labelled with its weights (but omits the keys and values that would be in

each node of a full wBST):

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


FILL IN YOUR UGRAD ID and read the de�nition on the previous page. Then, consider the

following pseudocode for correcting a wBST's weights:

// A node has four fields: key, value, weight, and subtrees left and right.

// The only field of the special value EMPTY representing empty trees is EMPTY.weight = 0.

// (So, for a wBST b, b.weight will not produce an error, even if b is an empty tree.)

function WeightBST(root):

if root != EMPTY:

WeightBST(root.left)

WeightBST(root.right)

root.weight = root.left.weight + root.right.weight

1. There is a single, small error in the code above; �x it.

2. After you have corrected it, a proof of correctness of this algorithm would proceed by induction. This

problem and the next two ask about such a proof.

Which of these would be the type of tree to use for the base case in the proof? Fill in the circle next

to the best answer.

an incorrectly weighted tree

a correctly weighted tree

an empty tree

a single leaf node

a tree one node smaller than the current one

the two subtrees of the current tree

3. Your induction hypothesis will assume a property applies to a particular type of tree. Which of these

best describes the type of tree on which you make the induction hypothesis? Fill in the circle next to

the best answer.

an incorrectly weighted tree

a correctly weighted tree

an empty tree

a single leaf node

a tree one node smaller than the current one

the two subtrees of the current tree

4. Your induction hypothesis will assume a property applies to a particular type of tree. Which of these

best describes the property you will assume true for the type of tree you chose in the previous part?

Fill in the circle next to the best answer.

it is weighted correctly

it is weighted incorrectly

it is an empty tree

it has a single leaf node

it has one fewer nodes than the current tree

it is a subtree of the current tree

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


5. Fill in the circle next to the best asymptotic bound on the runtime of this algorithm in terms of the

number of nodes in the tree n.

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

6. Fill in the blanks to correctly and e�ciently complete the following code to count the number of keys

in a (correctly weighted) wBST root that are strictly larger than the target value lo. (As is usual,

no duplicate keys appear in the tree.)

procedure CountLarger(root, lo)

if root is EMPTY then

return 0

else if root.key < lo then

return

else if root.key = lo then

return

else

return

end if

end procedure

2.1 Quiz Solution

1. Change the root weight calculation to root.weight = root.left.weight + root.right.weight +

1.

2. an empty tree

3. the two subtrees of the current tree

4. it is weighted correctly

5. O(n)

6. No solution provided at this time.

2.2 Assignment

Note: For the proofs in this section, we will grade based on:

� A clear, correct, easily readable proof structure, which allows us to put our attention on individual

parts of the proof. The structure must re�ect both an understanding of induction and of the key

features of the algorithms, recurrences, and properties being proven.

� Clear, concise, correct, and easily readable arguments in each section of the proof.

Now, solve the following:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


1. Prove the correctness of the algorithm after the correction from the quiz solution.

Speci�cally, prove that after the call to WeightBST on root completes, for each node and empty tree

v in the subtree rooted at root the number of nodes in the subtree rooted at v is exactly v.weight.

2. Create a recurrence relation TW (n) describing the time taken by the WeightBST algorithm called on

a wBST with n nodes. (You don't know the structure of the wBST; so, assume for the recursive case

that the left subtree has k nodes.)

3. Prove inductively that TW (n) ≤ cn+ d for appropriate constants c and d.

4. Complete the CountLarger function so that it runs in O(h) time on a tree with height h.

5. Prove the correctness of CountLarger by induction.

6. Write pseudocode for a short, clear, and e�cient function CountRange(root, lo, hi) that counts

the number of nodes in the correctly-weighted wBST root with keys k such that lo < k ≤ hi. Make

use of WeightBST or CountLarger as needed.

3 Preparing for Sasquatch (Part 1)

Every year, on Memorial Day weekend, the Gorge Amphitheater in Washington hosts the Sasquatch! Music

Festival. Tickets are expensive, so if you go it's imperative to maximize your musical pleasure by attending

as many performances as you can. Luckily, you're enrolled in cpsc320, which makes you an expert in festival

planning!

A performance is represented by a pair (s, f) where s is its start time and f is its �nish time (relative to

the start of the festival). There are n performances over the three days, hosted across many stages. Your

goal is to maximize the number of non-overlapping performances in your festival itinerary.

In each of the following greedy algorithms, answer "Yes" if the algorithm always constructs an optimal

schedule, and answer "No" otherwise.
Yes No Algorithm:

1 Choose the performance p that ends last, discard all performances that con�ict with p,
and recurse on the remaining performances.

2 Choose the performance p that starts last, discard all performances that con�ict with p,
and recurse on the remaining performances.

3 Choose the performance p with shortest duration (f − s), discard all performances that

con�ict with p, and recurse on the remaining performances.

4 Choose a performance p that con�icts with the fewest other performances, discard all

performances that con�ict with p, and recurse on the remaining performances.

5 If no performances con�ict, choose them all. Otherwise, discard a performance that

con�icts with the most other performances and recurse on the remaining performances.

6 If any performance p completely contains another performance, discard p and recurse.

Otherwise, choose the performance q that ends �rst, discard all performances that can�ict

with q, and recurse on the remaining performances.

3.1 Quiz Solution

1. NO

2. YES

3. NO

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://www.sasquatchfestival.com
https://www.sasquatchfestival.com
http://creativecommons.org/licenses/by/4.0/


4. NO

5. NO

6. YES

3.2 Assignment

1. Prove that each of the answers above is correct.

For a "No" answer: give a small instance (counterexample to the algorithm's correctness) where the

greedy algorithm described fails to achieve an optimal solution. Be sure to brie�y explain the optimal

solution and the lower-valued solution found by the greedy algorithm. Your counterexample should

not critically rely on tie-breaking behaviour of the algorithm to illustrate what it is meant to show.

For a "Yes", prove your result. (Neither proof requires an exchange argument if you can think of a

useful reduction.)

Reminder, you are giving in order:

(a) Counterexample

(b) Proof

(c) Counterexample

(d) Counterexample

(e) Counterexample

(f) Proof

2. Suppose the organizers of the festival would like to schedule a set of times where things like ra�e

winners, camping rules, and merchandise tent hours could be announced to all the festival attendees.

To do this, a broadcast is made simultaneously to every performance occurring at the time of the

announcement. Describe and analyze a greedy algorithm to �nd the smallest set of broadcast times

required to assure that every performance has at least one announcement.

(a) Give 3 di�erent trivial instances.

(b) Give all of the meaningfully distinct instances for n = 2 performances.

(c) Write pseudocode for a greedy algorithm to solve this problem. (As a simplifying hint, it's ok

for announcements to be made exactly when a performance begins or ends.)

(d) Prove that your greedy algorithm �nds an optimal solution.

(Thanks to http://jeffe.cs.illinois.edu/teaching/algorithms/notes/07-greedy.pdf for the

great problems.)

4 Preparing for Sasquatch (Part 2)

Suppose there are n candidates running for a public o�ce, and that voting has provided a tally that

indicates, between any pair of candidates, which one is preferred. This is very naturally modeled as a

directed graph with n vertices, and exactly one directed edge between every pair of vertices: G = (V,E),
with V = c1, . . . , cn and ∀u, v ∈ V either (u, v) ∈ E, or (v, u) ∈ E, but not both. Such a graph is called a

tournament.

A ranking is a permutation of candidates c(1) . . . c(n) so that edge (c(i), c(i+1)) ∈ E for all 1 ≤ i < n. In
this problem we will show that a ranking always exists, even if there are cycles in the original graph. (An

alternative way of representing the solution is a simple directed path through all the vertices.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/07-greedy.pdf
http://creativecommons.org/licenses/by/4.0/


Here's an example of a tournament of size n = 4 with a ranking in bold:

c(1) c(2) c(3) c(4)

The actual names of the candidates (or the labels on the vertices), do not matter in this problem.

A proof that a ranking is always possible in a tournament would proceed by induction. These questions

are designed to help you gather your thoughts for completing that proof.

1. (We're doing this one for you!) There is only one instance for n = 2, drawn here:

c(1) c(2)

2. Draw all instances for n = 3:

3. In each of the size 3 instances in the previous part, clearly indicate a ranking by drawing a dotted

line along the directed path through all the vertices.

4. Consider an arbitrary tournament of size n. An appropriate inductive hypothesis would apply to

.

a tournament of size n
2

a directed, acyclic graph of size n

a tournament of size n− 1

a DFS tree of n− 1 edges

a directed acyclic graph of size n
2

a partition of the tournament into 3 subgraphs

5. The inductive hypothesis would conclude by saying the structure you speci�ed in the previous part

has a .

tournament

ranking

champion

tree of shortest paths

vertex whose out degree is 0

directed acyclic graph of size n
2

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


6. Suppose you have a tournament of size m and you add a new vertex v, together with edges from v to

each of the vertices in the tournament. Can you add the new vertex to the ranking? If so, where? If

not, why not? (Choose the best answer to these questions.)

Yes, anywhere!

Yes, in position 1.

Yes, in position m+ 1.

Maybe, depending on the structure of the existing tournament.

No, because the new vertex must have both an incoming and an outgoing edge.

7. Suppose you have a tournament of size m and you add a new vertex v, together with edges from each

of the vertices in the tournament to v. Can you add the new vertex to the ranking? If so, where? If

not, why not? (Choose the best answer to these questions.)

Yes, anywhere!

Yes, in position 1.

Yes, in position m+ 1.

Maybe, depending on the structure of the existing tournament.

No, because the new vertex must have both an incoming and an outgoing edge.

4.1 Quiz Solution

1. Given above.

2. Here are the only two meaningfully di�erent instances. Any other instance is just a renaming of these

(and remember that the vertex labels don't matter).

c(1) c(2) c(3)

c(1) c(2) c(3)

3. See above.

4. a tournament of size n− 1

5. ranking

6. yes in position 1

7. yes in position m+ 1

4.2 Assignment

1. To further prepare for your inductive argument, make a sketch representing the ranking for a tourna-

ment of size n−1, and consider an nth vertex. Under what condition can it be inserted into position 1?

Under what condition can it be inserted into the middle of the existing chain? Under what condition

can it be inserted into position n? Must one of those conditions exist?

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Assemble the answers from the quiz and the exploration in the previous part into a complete proof

that, for any n, a tournament of size n always has a ranking.

3. Use the insights from your proof to design (and give in pseudocode!) an algorithm for �nding a

ranking, given a tournament.

4. Give and brie�y justify a good big-O bound on the running time of the algorithm in the previous part

in terms of the number of vertices n in the graph.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	eXtreme True And/Or False
	Quiz Solution
	Assignment

	Bestride the BST
	Quiz Solution
	Assignment

	Preparing for Sasquatch (Part 1)
	Quiz Solution
	Assignment

	Preparing for Sasquatch (Part 2)
	Quiz Solution
	Assignment


