
CPSC 320 2017W1: Assignment 4

November 2, 2017

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify every-

one in your group if you're making a group submission (which we encourage!).

Submit by the deadline Friday 17 Nov at 10PM. For credit, your group must make a single sub-

mission via one group member's account, marking all other group members in that submission using

GradeScope's interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to

the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.

Scanned documents will likely work well. High-quality photographs are OK if we agree they're

legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout

(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,

very clearly and prominently indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of

your team. (No names are necessary.)

� Include at the start of the document the statement: "All group members have read and followed

the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with

anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope

information) away, and (2) after a suitable break, my group created the assignment I am submitting

without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca e-mail ad-

dresses. (Be sure to get those when you collaborate!)

1 Making Every Second Count

Aconcagua.ca sells storage on both an auction and �xed-price basis. They want to use historical auction

data to investigate their �xed price choices.

For n seconds, they have the price point reached in each second in their auctions. They want to �nd

the largest price-over-time stretch in their data. That is, given an array A of n price points, they want to

�nd the largest possible value of f(i, d) = d ∗min(A[i], A[i+ 1], . . . , A[i+ d− 1]) where i is the index of the
left end of a stretch of seconds, d is the duration in seconds of that stretch, and so the function f computes

the duration multiplied by the minimum price over that period. (Prices are positive, d ≥ 0, for all values
of i, f(i, 0) = 0, and for legal indexes i into A, f(i, 1) = A[i].)

For example, the best stretch is underlined in the following price array: [8, 2, 9, 5, 6, 5, 3, 1]. Using 1-

based indexing, the value for this optimal stretch starting at index 3 and running for 4 seconds is f(3, 4) =
4 ∗min(9, 5, 6, 5) = 4 ∗ 5 = 20.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

1. Write out two trivial instances of the Aconcagua problem.

(a) First instance:

(b) Second instance:

2. Fill in the blanks below with the optimal values for i and d, and f(i, d) in each array. You MUST

use 1-based indexing. (The �rst element of each array has an index of 1.)

(a) [1, 9, 4, 7, 4, 2, 8]

Value of i:

Value of d:

Value of f(i, d):

(b) [18, 6, 8, 3, 4, 5, 11]

Value of i:

Value of d:

Value of f(i, d):

(c) [2, 2, 2, 2]

Value of i:

Value of d:

Value of f(i, d):

3. Fill in best choice of circles among each set below to complete design of a brute force algorithm to

solve the "Aconcagua" problem and analyse its runtime in terms of n, the length of A.

A valid solution to the Aconcagua problem is

a pair of values for i and d

a value for f(i, d)

a subset of A

. However, a better

quantity to consider in designing a brute force approach is

a pair of values for i and d

a value for f(i, d)

a subset of A

. There are

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

O(n)

O(n lg n)

O(n2)

O(n3)

O(2n)

of these quantities. Given a candidate quantity, a brute force approach to computing

its f value would take

O(1)

O(d)

O(f)

O(i)

O(n)

to run. Overall the resulting natural brute force algorithm will take

O(n)

O(n lg n)

O(n2)

O(n3)

O(2n)

time to run, which is
polynomial

exponential
.

4. Consider again the example array: [8, 2, 9, 5, 6, 5, 3, 1]. Imagine that you are told that the solution

must use the elements at indexes 4 and 5 (i.e., elements 5 and 6, using 1-based indexing). You begin

by considering the smallest stretch of the array that includes these two elements: i = 4, d = 2 (i.e.,

elements 5 and 6 only) and repeatedly expand that candidate "stretch" to include one more element

either to the left or right of the existing stretch while maintaining the invariant that the stretch you

have chosen is the best of that length (value of d) that includes indexes 4 and 5 until the stretch

includes the entire array.

Finish the following table describing this expansion, thinking carefully about why you make the choice

you do at each point:

i d minimum f(i, d)

4 2 5 10

3 3 5 15

3 4 5 20

1 8 1 8

1.1 Quiz Solution

1. There are many reasonable trivial solutions to the problem. For example:

� A length 0 array has a maximum f value of 0.

� A length 1 array has a maximum f value of A[1].

� An array of any length n ≥ 1 �lled with all identical elements has a maximum f value of A[1]∗n.
(You may or may not consider that last trivial.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2. (a) [1, 9, 4, 7, 4, 2, 8]

i = 2, d = 4, f(i, d) = 16

(b) [18, 6, 8, 3, 4, 5, 11]

i = 1, d = 7, f(i, d) = 21

(c) [2, 2, 2, 2]

i = 1, d = 4, f(i, d) = 8

3. A valid solution to the Aconcagua problem is a value for f(i, d). However, a better quantity to

consider in designing a brute force approach is a pair of values for i and d. There are O(n2) of
these quantities. Given a candidate quantity, a brute force approach to computing its f value would

take O(d) to run. Overall the resulting natural brute force algorithm will take O(n3) time to run,

which is polynomial.

4. Consider again the example array: [8, 2, 9, 5, 6, 5, 3, 1]. . . .

Finish the following table describing this expansion, thinking carefully about why you make the choice

you do at each point:

i d minimum f(i, d)

4 2 5 10

3 3 5 15

3 4 5 20

3 5 3 15

2 6 2 12

1 7 2 14

1 8 1 8

(At each step, we just expand the stretch in the direction of the larger value on the border of the

stretch, or the only allowable stretch once we reach a boundary.)

1.2 Assignment

1. Give pseudo-code for the natural brute force algorithm to solve the Aconcagua problem in Θ(n3)
time.

BruteSolveAcon(A, n):

2. Give pseudocode for an e�cient divide-and-conquaguar divide-and-conquer algorithm for �nding the

optimal price stretch based on the insight in quiz question 4.

Conquaguar(A, n):

3. Give and brie�y justify a good asymptotic bound on the runtime of your algorithm.

4. Prove that your algorithm implementing the insight from quiz question 4 has (in general, not just for

the array from that question) the property described in that question. Speci�cally: at each step, it

�nds the best stretch of the length (value of d) under consideration that includes the middle indexes

of the array.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 Quadsires

The popular augmented reality game Lokimon Go maintains a large map of sites of interest�like Lokistops

and Gyms�each with x and y coordinates. (Longitude and latitude, but for our purposes, we'll take these

to be integer x and y on a Cartesian grid.)

These are stored in a type of "quad tree" data structure. Speci�cally, the structure is a 4-ary tree. Each

node n is associated with a Lokimon Go site of interest n.site, represented simply as a (x, y) coordinate
pair giving the location of the site (n.site for the pair or n.site.x and n.site.y for the individual

coordinates). The node's four subtrees are n.NE, n.SE, n.SW, and n.NW. These are (respectively): the area

to the northeast (higher x and y values), southeast (higher x and lower y values), southwest (lower x and

y values), and northwest (lower x and higher y values). Some of these subtrees may be empty (represented

by the special quad tree value EMPTY) if they contain no sites of interest.

There are some boundary cases: No two sites have the same coordinates. Sites that are due north or

due east are both included in the NE subtree, due south in the SE subtree, and due west in the NW subtree.

For example, on the left below is a set of sites we might want to put into a Lokimon Go quad tree. On

the right is that set in a possible quad tree. The root is the largest dot at (1, 4) with lines separating out

its NE, SE, SW, and NW quadrants. It has three non-empty subtrees, and each root of these subtrees is

drawn with a slightly smaller dot. The NE is rooted at (3, 5), the SE at (4, 3), and the NW at (0, 5). Only
the SE subtree has further children. It has a SW subtree (rooted at (3, 1)) which in turn has a NW subtree

(rooted at (2, 2)).

x axis

y axis

0 1 2 3 4
0

1

2

3

4

5

x axis

y axis

0 1 2 3 4
0

1

2

3

4

5

We could then search for a site like (2, 2) by accessing the root, which is at (1, 4), observing that (2, 2)
is to the SW of the root, and recursing into the SW subtree of the root.

We also de�ne a rectangle ((xlo, ylo), (xhi, yhi)) to contain the set of sites with coordinates (x, y) such
that x is between xlo and xhi and y is between ylo and yhi. (We are intentionally vague on the boundary

conditions for the moment. However, if xlo > xhi or ylo > yhi, the rectangle is empty.)
We gave a rough outline of a good algorithm for searching a quadtree for a site above. Assume that

Search(qt, pt) is an e�cient and correct implementation of this algorithm that takes a quadtree qt and

(x, y) coordinate pair pt and produces the quad tree node containing that site (if any) or the special empty

quad tree value EMPTY (otherwise).

1. This algorithm will have two base cases. What will they be? Fill in the boxes next to the TWO that

apply:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

qt is the root node of the quad tree

pt is (0, 0)

qt is EMPTY

qt.site is equal to pt

qt.site.value is 0

2. Let pt be (xp, yp) and the coordinates of qt.site be (xq, yq). If xp < xq and yp ≥ yq, which subtree

should we recurse into? Fill in the circle next to the correct answer.

NE

SE

SW

NW

3. Give a good big-O bound on the worst-case runtime of Search in terms of each of the following

variables or write "none" if no such bound can be given.

(a) The number of nodes e in qt that are to the east of (have x coordinates at least as large as) pt:

(b) The number of nodes n in qt:

(c) The height h of qt:

4. We can use a rectangle to de�ne the portion of the (x, y) plane contained in each subtree of the

quadtree. So, the root contains ((−∞,−∞), (∞,∞)), but the root's SE subtree contains only

((root.site.x,−∞), (∞, root.site.y)).

If a given subtree contains the rectangle ((xlo, ylo), (xhi, yhi)), we can ask whether the subtree (and

its rectangle) should contain sites on its northern (y = yhi), eastern (x = xhi), southern (y = ylo),
and western (x = xlo) boundaries. For each of the following indicate the best choice about whether a

subtree should contain sites on these boundaries (YES) or should not (NO) based on the de�nitions

above. Do not worry about in�nite values (∞ and −∞) in these choices.

Boundary YES NO

Northern:

Eastern:

Southern:

Western:

5. Assume we add a �eld box to each node that is a four-tuple: (xlo, xhi, ylo, yhi), where n.box

should contain the boundaries for the rectangle representing the portion of the (x, y) plane contained
in the subtree rooted at n. Complete the following algorithm for setting correct box boundaries on the

nodes of a quad-tree, given that the given parameters (xlo, xhi, ylo, yhi) are correct boundaries

for the subtree qt. Note that we only ask for the NE and SW subtrees, leaving . . . for the parameters

for the recursive calls on the NW and SE subtrees. You should assume that the SE and NW subtrees

are handled correctly.

procedure SetBox(qt, xlo, xhi, ylo, yhi)

x = qt.site.x

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

y = qt.site.y

if root is not EMPTY then

qt.box = (xlo, xhi, ylo, yhi)

SetBox(qt.NE, , , ,)

SetBox(qt.SE, . . . , . . . , . . . , . . .)

SetBox(qt.SW, , , ,)

SetBox(qt.NW, . . . , . . . , . . . , . . .)

end if

end procedure

6. Give a good big-O bound on the worst-case runtime of a correct and e�cient implementation of

SetBox in terms of each of the following variables or write "none" if no such bound can be given.

(a) The number of nodes e in qt that are to the east of (have x coordinates at least as large as) xlo:

(b) The number of nodes n in qt:

(c) The height h of qt:

2.1 Quiz Solution

1. Base cases: qt is EMPTY, qt.site is equal to pt.

2. NW (because smaller x is W and larger y is N)

3. The algorithm traverses a single path from root to target or leaf.

(a) The number of nodes e in qt that are to the east of (have x coordinates at least as large as) pt:

"none"

(b) The number of nodes n in qt: O(n)

(c) The height h of qt: O(h)

4.

Boundary SOLUTION

Northern: NO

Eastern: NO

Southern: YES

Western: YES

(Why? Consider which directions from a root node are included in each of the subtrees. E.g., because

sites due north of the root are included in the NE subtree, the NE subtree must include its western

boundary (which is that due north line).)

5. procedure SetBox(qt, xlo, xhi, ylo, yhi)

x = qt.site.x

y = qt.site.y

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

if root is not EMPTY then

qt.box = (xlo, xhi, ylo, yhi)

SetBox(qt.NE, qt.site.x, xhi, qt.site.y, yhi)

SetBox(qt.SE, . . . , . . . , . . . , . . .)

SetBox(qt.SW, xlo, qt.site.x, ylo, qt.site.y)

SetBox(qt.NW, . . . , . . . , . . . , . . .)

end if

end procedure

6. The algorithm spends constant time at each node.

(a) The number of nodes e in qt that are to the east of (have x coordinates at least as large as) xlo:

O(e)

(b) The number of nodes n in qt: O(n)

(c) The height h of qt: O(4h)

2.2 Assignment

We add to each node a non-negative integer freq �eld representing the frequency at which we expect that

node's site to be accessed in Lokimon Go. We want higher-frequency nodes to be closer to the root of the

tree. In particular, if a node is k steps from the root (where for the root, k = 0), then we assign it a cost

of k ∗ freq. The cost of a whole tree is the sum of the costs of each of its nodes.

1. Give e�cient pseudocode for a function Cost that computes the total cost of a tree qt (that has freq

�elds).

Cost(qt):

2. Given a set of sites and their frequencies, we can ask which is the optimal quadtree (i.e., a quadtree

that has minimal cost among all possible quadtrees built from the same sites).

Give pseudocode for a brute-force, recursive algorithm to �nd the total cost of the optimal quadtree

for a given set of sites with their frequencies.

Hint: Add two "fake" zero-frequency sites at (−∞,−∞) and (∞,∞). A subproblem can be described

by a rectangle that could be the box associated with a subtree of the �nal quadtree. A rectangle is an

(x, y) coordinate for the lower-left corner and an (x, y) coordinate for the upper-right corner. Now,
how can you concisely describe a subproblem?

BruteBuildQT(sites, freqs, n):

3. Give pseudocode for a memoized version of your brute-force algorithm. Your memoized algorithm

must run in worst-case O(n3) time (for n sites).

MemoizedBuildQT(sites, freqs, n):

3 Shreddin' the Gnar

Enough of all this hard work, it's time to start thinking about the snowboarding season! Cypress is opening

a huge new run with a sequence of jumping ramps designed to delight. Every day, they'll hold a contest to

see who can catch the most air on the way down the mountain. You are tasked with planning the winning

route, according to the following rules: whenever you reach a ramp while on the ground, you can either use

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

that ramp to jump through the air, possibly �ying over one or more ramps, or shred past that ramp and

stay on the ground. Obviously, if you �y over a ramp, you cannot use that ramp to increase your air time.

Based on observation and experimentation, you have assembled the following data: an array R[1 . . . n],
where R[i] is the distance from the top of the hill to the ith ramp, and an array L[1 . . . n], where L[i] is the
distance any boarder who takes the ith ramp will travel through the air. For simplicity, you may assume

that array R is sorted by distance, so that the ramps are numbered 1 . . . n down the mountain.

In this part of the problem we will design an algorithm to �nd an optimal solution. Don't forget the

de�nition of N(i): For any index i, let N(i) denote the smallest index j such that R[j] > R[i] + L[i]. You
may also �nd it convenient to de�ne R[n + 1] =∞.

3.1 Quiz and Solution

1. A reasonable de�nition for an algorithm to solve this problem would be MA(i):

The maximum distance spent in the air starting on the ground at ramp i.

The maximum number of ramps taken before ramp i.

The maximum number of ramps taken after starting on the ground at ramp i.

The minimum number of ramps missed after starting on the ground at ramp i.

The single longest jump remaining after and including ramp i.

The minimum total distance spent in the air before ramp i.

2. We can solve the problem by calling the algorithm as: MA(1) MA(n) (choose one).

3. A base case for the problem is: MA(i) = if i > n i < n (choose one).

4. Suppose you choose not to take ramp i. Then, MA(i) is just:

N(i)

MA(i)

MA(i + 1)

MA(N(i))

None of these.

5. Suppose you choose to take ramp i. In that case, MA(i) is:

L[i] + MA(i + 1)

R[i + 1] + MA(i + 1)

L[N(i)] + MA(i + 1)

L[i] + MA(N(i))

None of these.

6. The recursive case of the dynamic programming algorithm you can use to solve this problem takes

the max min (choose one) of the values in the last two parts.

7. Given the algorithm you have designed by your selections above, a reasonable approach to memoizing

the computation would require space.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

We don't have enough information to answer the question.

3.2 Assignment

Putting together the results from the quiz. . .

Let MA(i) denote the maximum distance any snowboarder can spend in the air starting on the ground

at the ith ramp. We need to compute MA(1). This function satis�es the following recurrence:

MA(i) =

0 i > n

max

{
MA(i + 1)

L[i] + MA(N(i))

}
1 ≤ i ≤ n

1. Complete the pseudocode below to de�ne a dynamic programming (iterative memoized) algorithm

for computing MA(i). Assume N(i) is already implemented, but think about how it works and about

its running time on data of size i. Write clearly and carefully and follow the existing notation, as

some minor di�erences in notation can also indicate substantial misunderstandings. (Please do use

the typical max function available in most languages.)

function MaxAir(R[1..n], L[1..n])
R[n + 1]←∞

MA[n + 1]←

for i = n down to 1 do

MA[i]←

end for

return MA[1]

2. Give a good upper bound on the running time of MaxAir on data of size n.

3. Uh Oh. The Cypress ski patrol heard about the contest and protested that it would result in too many

injuries. In response, Cypress imposed a limit on the number of jumps that any snowboarder can take

as they navigate the slope. Reformulate the problem and its solution using this new information:

(a) The problem is now parameterized by two input variables. Rewrite the de�nition of the function

MA(i, j) in English.

Let MA(i, j) denote. . .

(b) De�ne the recursive function that could be used to compute MA(i, j).

(c) Write pseudocode to de�ne a dynamic programming (iterative memoized) algorithm for comput-

ing MA(i, j).

(d) What is the running time of your algorithm?

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 Recurring Nightmare

4.1 Quiz and Answers

Below you will �nd �ve recurrences that should be familiar to you.

Identify the problem context in which you've seen each recurrence and write it in the answer box, and

also to discuss how each function relates to the problem that it solves. Annotate your answer with an

explanation for any recurrence which is not a worst case analysis of an upper bound on the running time.

1. Running time of on an array of size n:

T (n) =

{
0 n = 0

T (3n/4) + T (n/4) + n n > 0

This is much like the average-case analysis (or the similar expected analysis) for quicksort.

Asymptotic closed form: T (n) = Θ(n log n)

2. Running time of on an array of size n:

T (n) =

{
0 n = 0

T (n− 1) + T (1) + n n > 0

This is much like the worst-case analysis for quicksort.

Asymptotic closed form: T (n) = Θ(n2)

3. Running time of on an array of size n:

T (n) =

{
0 n = 0

T (3n/4) + T (n/5) + n n > 0

This is much like the worst-case analysis for deterministic select.

Asymptotic closed form: T (n) = Θ(n)

4. Running time of on an array of size n:

T (n) =

{
0 n = 0

2T (n/2) + n n > 0

This is much like the worst-case analysis for mergesort.

Asymptotic closed form: T (n) = Θ(n log n)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5. Running time of on input of magnitude n:

T (n) ≥

{
1 n ∈ {0, 1, . . . , 24}
3T (n− 25) + 1 n > 24

This is much like the lower-bound we developed on the runtime of our "brute force" recursive coin-

changing algorithm. Note that since we only know that T (n) ≥ the cases on the right, this is an Ω
bound, not a Θ bound.

Asymptotic closed form: T (n) = Ω(cn), c > 1

(A more speci�c function than cn would be �ne, but the key point on this recurrence in class was

that its solution is exponential.)

4.2 Assignment

1. Give an asymptotic solution to the recurrence below. In particular, follow these steps: draw a

recurrence tree and show your work as you develop a guess at the solution; then, prove that your

guess is correct via induction.

T (n) =

{
1 n = 1

3T (n/2) + n n > 1

2. Give an asymptotic solution to the recurrence below by substituting U(n) = n · T (n), noting the

well-known bound on the more familiar recurrence you �nd, and then deriving the bound on the

original function T (n). Show your steps using the substitution to get a more familiar recurrence and

then transforming this back into a solution for T (n).

T (n) =

{
1 n = 1
1
4T (n4) + 3

4T (3n4) + 1 n > 1

3. Give an asymptotic solution to the recurrence below by narrowing in on a tight bound. Loose

bounds�which you need not prove�of Ω(n) and O(n log n) are easy to establish. What functions lie

between those? Guess and prove! Hint: consider using functions like
√

lg x, lg lg x, and lg∗ x.

T (n) =

{
2 n = 2
√
n · T (

√
n) + n n > 2

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Making Every Second Count
	Quiz Solution
	Assignment

	Quadsires
	Quiz Solution
	Assignment

	Shreddin' the Gnar
	Quiz and Solution
	Assignment

	Recurring Nightmare
	Quiz and Answers
	Assignment

