
CPSC 320 2017W2: Assignment 2

January 27, 2018

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify ev-
eryone in your group if you're making a group submission. (Reminder: groups can include a maximum of
three students; we strongly encourage groups of two.)

Remember that this assignment is based on the collected quizzes and quiz solutions. You will likely
want to refer to those where you need more details on assignment questions.

Submit by the deadline Monday 5 Feb at 10PM. For credit, your group must make a single sub-
mission via one group member's account, marking all other group members and the pages associated with
each problem in that submission using GradeScope's interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,
very clearly and prominently indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. (Please do NOT include your name on the assignment, however.1)

� Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

1 Wall-E Loman

. . . the air doesn't smell so foul here. If in doubt . . . always follow your nose. � Gandalf

The Traveling Salesperson Optimization Problem (TSP) can be de�ned as follows: you are given a set
{C1, C2, . . . , Cn} of cities. For every two cities Ci, Cj , there is a cost ci,j for traveling from city Ci to city
Cj (equal to the cost of travelling from Cj to Ci). Your job is to �nd the lowest cost path that starts at C1,
travels through every other city, and returns to C1. You are not allowed to go through a city more than
once (except for C1 which appears both at the start and at the end of your trip).

1If you don't mind private information being stored outside Canada and want an extra double-check on your identity,

include your student number rather than your name.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

1. Brie�y but clearly justify why the number of valid solutions to an instance of TSP with n cities is
(n − 1)!. Note: a "brief justi�cation" is not a proof but should contain the key ideas that would
enable a correct proof.

2. Imagine that you have a brute force algorithm that builds up a partial path step-by-step as a candidate
solution to TSP. Each time it has visited all other nodes, it returns to C1 and measures the cost of
the solution.

Complete the following small instance of TSP by labelling each edge with a distinct cost so that it
can act as a counterexample to the correctness of the following heuristic for the algorithm: "always
add as the next city in the partial path the cheapest not-yet-visited city to reach".

Brie�y describe how the algorithm could run and produce an incorrect solution.

(E.g., "the algorithm starts at C1 then the heuristic guides it to select C2 then C3 then C4 as the
"next closest" city at each step, but this produces a total of XXX, whereas the following solution
produces a lower total . . . ".)

Instance:

3. The correctness of the following heuristic relies on a (very sensible) assumption about the costs of
travelling from one city to the next. What is the assumption, and why is it necessary?

Heuristic: "discard any partial path that is more expensive than the cheapest complete path found
so far".

4. Here is another heuristic for the algorithm for instances with at least 3 cities: "never include city C3

in a partial path until after city C2 has been included".

Sketch the key points in a proof that this heuristic is correct. I.e., the algorithm run with this
modi�cation will produce an optimal solution.

2 The Antepenultimate Jedi

You want to hire for a movie the best stars to draw the most people to the theaters. For each star, you
have a positive number indicating their "draw".

You can hire as many stars as you like. Certain actors consider themselves "big �sh". If you include a
big �sh with draw x, you may not include any other star with draw k such that x

2 < k ≤ x.

1. For this question only, every actor considers themselves a "big �sh". Give and brie�y justify the
correctness of an e�cient greedy algorithm to solve this problem. (Your algorithm is likely to be simple
enough that a clear English explanation is best, but clear and short pseudocode is also acceptable.)

2. We now alter the problem for this and subsequent parts. In the new version, the actor with the
highest draw overall is automatically a big �sh, whether or not they're in your movie. Additionally,

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

any other actor with draw x is a big �sh if there is no actor at all (whether or not they're in your
movie) with draw y such that x < y < 2x.2

So, for example, if the available stars have draw [8, 10, 22, 3, 2, 30, 4] then 30 (as the highest draw
actor) is a "big �sh". 22 is not (because 30 is between 22 and 44). 10 is a "big �sh" (because no
other actor has draw between 10 and 20). 8 is not. 4 is a big �sh. 3 and 2 are not.

Give an instance that includes actors with draw 11 and 13 in which the optimal solution involves
hiring both of these actors.

3. Give an instance that includes actors with draw 11 and 13 in which no valid solution (whether optimal
or not) involves hiring both actors.

4. Give and brie�y justify the correctness of an e�cient, greedy algorithm to solve this problem. (Your
algorithm may be simple enough that a clear English explanation is best, but clear and short pseu-
docode may work better.)

5. Below we propose (suboptimal) algorithms to solve this problem. Give a single instance with three
actors including one with draw 10 that serves as a counterexample to all the algorithms' optimality.
That is, each algorithm will either fail to produce any valid solution or produce a suboptimal solution.

Be sure to state: the list of draws in your instance, the optimal solution and its total draw
and for each algorithm the solution it produces and its total draw.

(a) Iterate through the stars in the order given. For each star, hire them if doing so would not
invalidate the so-far-hired set of stars.

(b) Sort the stars in decreasing order of draw. Iterate through the sorted stars. For each star, hire
them if doing so would not invalidate the so-far-hired set of stars.

(c) Sort the stars in decreasing order of draw. Iterate through the sorted stars. Hire the �rst
(biggest) star. Then, for each subsequent star, hire them unless they are a big �sh (in which
case, skip them).

3 Blue, Gold, and Green

For its Blue-and-Gold fundraising campaign, UBC has found anchors�major donors, each with a limit

(maximum amount they will donate)�and causes to which the anchors will donate.3 Each cause has a
goal, the maximum money that will go to the cause. An anchor donates to at most one cause, but one
cause may receive donations from many anchors, and the total amount of the donations of anchors
to a cause cannot exceed that cause's goal. The Blue-and-Gold Problem, or BGP, consists in determining
how much money each anchor will give to each cause, subject to the constraints stated above. A BGP
instance's solution is the maximum dollar amount that can be raised. (Assume limits are distinct, as are
goals.)

1. An instance of BGP can be represented clearly and cleanly as a weighted, undirected, bipartite graph
(where each edge has a single number as its weight). Draw the instance with limits 10, 100, 30, 40
for anchors a1, a2, a3, a4, and goals 50, 80, 10 for causes c1, c2, c3.

2. Below we propose (suboptimal) algorithms to solve this problem. Give a single instance with three
limits [100, 50, 200] and two goals of your choice that serves as a counterexample to all the algo-
rithms' optimality. That is, each algorithm will either fail to produce any valid solution or produce a
suboptimal solution.

2They're a big �sh in a little pond.
3And which are then named for them, like the Belleville Urban Beauti�cation Project or Wolfman Lunar Research Fund.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Be sure to state: the list of goals for your instance, the optimal solution and the an-
chor/cause pairings that generate it and for each algorithm the solution it produces and
the anchor/cause pairings that generate it.

Notes: (1) We use "limit" and "anchor" interchangeably. (2) All of these algorithms do the "right"
thing when matching an anchor to a goal: They let the anchor donate the minimum of their limit
and the money remaining before the goal is met and then update the money remaining for that goal.

(a) Iterate through the anchors in the order given. For each anchor, assign them to the cause with
the most money still left before reaching its goal.

(b) Sort the goals in decreasing order. Iterate through the goals, matching each with the largest
anchor who has not already been assigned a goal.

(c) Sort each of the limits and the goals in decreasing order. Iterate through the anchors, matching
each with the �rst remaining goal. (Remove a goal when its fundraising target has been met.)

3. PROBLEM CUT FROM ASSIGNMENT

4 Oh Oh Oh

1. Determine the worst case running time of the colorize algorithm as a function of both n and m:

// G = (V, E) is an undirected graph, represented as an adjacency list

function colorize(V, E)

n = |V|

m = |E|

let Colors be a list of at least n distinct colors

for i = 0 to n - 1:

V[i].setvisited(False)

for i = 0 to n - 1:

DFS(V[i], (function(v): v.setcolor(Colors[i])))

where DFS is de�ned as:

function DFS(v, visitfunction)

if not v.getvisited():

visitfunction(v)

v.setvisited(True)

for w in neighbours(v):

DFS(w, visitfunction)

2. Brie�y justify how your bound applies to a complete graph, including how and why each piece of the
code contributes to the bound.

3. Describe in English what this algorithm does. Your description should be brief, clear, and precise.

5 O'd to a Pair of Runtimes

For this problem, we consider a dense, undirected graph and a simple path in that graph of length k. (A
dense graph has m ∈ Θ(n2). A simple path of length k is a list of k+ 1 vertices where each subsequent pair
of vertices is connected by an edge and no vertex appears more than once in the list.) ASSUME k > 0.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1. Give exact upper- and lower-bounds on k in terms of n. (Note that "expressing y in terms of x"
means you can but need not use x in a function you provide to describe y.)

2. Give an exact upper-bound on m in terms of n.

3. Brie�y justify why it is not possible to give an exact lower-bound on m in terms of n using the
information above.

4. Give a good Θ-bound on each of the following functions from above. Express your bound in terms of
as few as possible of the variables k, n, and m.

(a) n lg(knm)

(b) (k + m)(n + k)

(c) k3 + m lgm

6 eXtreme True And/Or False

Each of the following problems presents a scenario in a graph and a statement about that scenario. For
each one, exactly one of the following is correct:

1. The statement is ALWAYS true, i.e., true in every graph matching the scenario.

2. The statement is SOMETIMES true, i.e., true in some graph matching the scenario but also false
in some such instance.

3. The statement is NEVER true, i.e., true in none of the graphs matching the scenario.

Brie�y justify the correct answer to each one.

� Justify an ALWAYS answer by giving a small instance that �ts the scenario for which the statement
is true and then brie�y sketching the key points in a proof that the statement is true for all instances
that �t the scenario.

� Justify a NEVER answer by giving a small instance that �ts the scenario for which the statement is
false and then brie�y sketching the key points in a proof that the statement is false for all instances
that �t the scenario.

� Justify a SOMETIMES answer by giving two small instances that �t the scenario: one for which
the statement is true and one for which the statement is false. (Indicate which is which!)

Recall: |V | = n, |E| = m. A vertex's degree is the number of edges incident on it. For directed graphs,
a vertex's in-degree is the number of edges ending at the vertex and the out-degree is the number starting
from it. A path of length k is a list of k + 1 vertices with an edge between each consecutive pair of vertices.
A simple path repeats no vertex. A cycle is a path that starts and ends at the same vertex. A simple cycle

repeats no vertex other than the starting/end vertex (which only appears twice). Unless stated otherwise,
we assume graphs have no self-loops (edges from a vertex to itself).

1. Scenario: An undirected graph with n ≥ 2 and at least n2

4 edges. Statement: The graph is
connected.

2. Scenario: A tree (undirected) found by DFS run on a connected, undirected graph with n ≥ 2.
Statement: The degree of every node in the tree is two or less.

3. Scenario: A weakly-connected but not strongly-connected, directed graph with n ≥ 2. Statement:
A simple cycle of length n + 1 exists.

4. Scenario: A connected, undirected graph with n ≥ 3. Statement: The graph includes at least 2n

di�erent simple cycles.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

7 BONUS!

This is worth only one course bonus point (for a clearly on-track answer that makes signi�cant progress)
or two course bonus points (for a beautiful, complete answer), which is way too little for how much work
it is. On the other hand, how fun is it?! (On a correct group submission, each group member earns the
number of bonus points noted above.)

Give and prove the correctness of an achievable, asymptotic upper-bound (in terms of n) on the number
of optimal solutions to an interval scheduling problem instance with n intervals. Hint: it isn't an answer
in online quiz #4!

Note that you'll need to give your bound, give a way to construct an instance of an arbitrary size n
that has a number of solutions in your bound, and show that no higher bound is possible.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Wall-E Loman
	The Antepenultimate Jedi
	Blue, Gold, and Green
	Oh Oh Oh
	O'd to a Pair of Runtimes
	eXtreme True And/Or False
	BONUS!

