
CPSC 320 2017W2: Quiz 1

January 12, 2018

1 Looping Back to Asymptotic Analysis

Each row of the table below lists a problem posed for an array of n numbers. You are determining good
big-O bounds for the worst-case performance of e�cient algorithms for each problem. In the left
blank, give a bound for an e�cient algorithm if the input array is not known to be sorted. In the
right blank, give a bound for an e�cient algorithm if the input array is known to be already sorted.

Each bound is one of: O(1), O(lg n), O(n), O(n lg n), O(n2).
Note: throughout this problem, assume basic operations on numbers take constant time.

The problem is to �nd. . . big-O bound (unordered) big-O bound (known to be sorted)

. . . a given target value

. . . the average value

. . . a pair of values summing to a

given target value

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


For the individual portion only, �nish these additional table entries:

The problem is to �nd. . . big-O bound (unordered) big-O bound (known to be sorted)

. . . the three smallest values

. . . the number of values that are

larger than the average value

. . . whether any value is repeated

(appears more than once)

Finally, note that for some algorithms over arrays, even if the input is not known to be sorted, sorted
arrays are a common case worth optimizing for.

For example, if the problem were to determine if any array contains any positive numbers, then we can
start a linear scan for positive numbers from the right, returning YES as soon as we �nd a positive or NO
when we �nish the scan. On any array that happens to be sorted and that happens to have a positive
number, this algorithm runs in constant time. In the worst case, it still takes linear time.

A friend suggests that sorted arrays are a case worth optimizing for when �nding the three smallest
values in an array of n numbers. Is there a correct and e�cient algorithm for this problem that has
an asymptotically better runtime in the case where the input happens to be sorted (but is not known
beforehand to be sorted)?

Fill in the circle beside the best answer:
Yes

No

2 All Tied Up

SMP, as discussed in class, assumes that every woman and every man has a fully ordered preference
list. In this problem (except the last question of the individual part), we consider the situation where a
woman or man may have ties in their ranking. For instance, woman w1 might have a preference list like
m3,m1 = m4,m2, meaning she likes man m3 best, followed by m1 and m4 in no particular order (that is,
she does not prefer m1 to m4, nor m4 to m1), followed by m2. In this case, we say that w1 is indi�erent

between m1 and m4. It is possible for a woman or a man to be indi�erent between more than two people
and between multiple sets of people.

We will call this problem STP (the SMP with Ties Problem).

1. A strong instability in a perfect matching consists of a woman w and a man m such that w and m
both (strictly) prefer each other to their current partner.

Now, �ll in the circle to indicate whether the following statement is always true (true for every

situation matching the scenario), sometimes true (true for at least one situation matching the
scenario but also false for at least one such situation), or never true.

Scenario: I is an instance of STP.

Statement: I has a valid solution (perfect matching) with no strong instability.

Always

Sometimes

Never

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. What is the largest number of solutions without strong instabilities that any STP instance with n

women can have?

3. Continuing with the always/sometimes/never problem type above, �ll in the circle next to the best
answer for the following scenario and statement.

Scenario: I is an instance of STP in which every woman is indi�erent between m1 and m2. m1

ranks w1 �rst (tied with no one) while m2 ranks w1 last (tied with no one). P is a solution to I with
no strong instabilities.

Statement: m2 marries w1 in P .

Always

Sometimes

Never

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. A weak instability in STP is one of:

� a strong instability (i.e., every strong instability is also a weak instability),

� a woman w and man m such that w prefers m to her partner and m is indi�erent between w
and his partner, or

� a man m and woman w such that m prefers w to his partner and w is indi�erent between m and
her partner.

Continuing with the always/sometimes/never problem type above, �ll in the circle next to the best
answer for the following scenario and statement.

Scenario: I is an instance of STP.

Statement: I has a valid solution (perfect matching) with no weak instability.

Always

Sometimes

Never

5. RETURNING TO THE STANDARD VERSION OF SMP (with no ties in preference lists):
Imagine we decide to resolve the "unfairness" of the Gale-Shapley algorithm (which gives optimal
results to the proposing side and pessimal results to the other side) by alternating proposals between
men and women:

1: procedure Fair-And-Balanced-Marriage(M , W )
2: initialize all men in M and women in W to unengaged
3: while an unengaged man with at least one woman on his preference list remains do
4: let a woman make the �rst proposal, and after that

let the opposite gender (of the last proposer) make the next proposal
5: choose an engaged person of the proposing gender p
6: propose to the next person p′ on the preference list of p
7: if p′ is unengaged then
8: engage p to p′

9: else if p′ prefers p to their �ancee then
10: break engagement of p′ to their �ancee
11: engage p to p′

12: end if

13: cross p′ o� p's preference list
14: end while

15: report the set of engaged pairs as the �nal matching
16: end procedure

Continuing with the always/sometimes/never problem type above, �ll in the circle next to the best
answer for the following scenario and statement.

Scenario: P is a solution produced by this "fair and balanced" marriage algorithm on an instance
of SMP.

Statement: P is stable.

Always

Sometimes

Never

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3 To Re Mi Pa So Ti La Do!

Anytime that we're exploring any solution space for a problem involving many di�erent people with their
own desires and preferences, we can de�ne "strong Pareto optimality" as a useful criterion, often just called
"Pareto optimality".

First, we need to de�ne a "single step" from one solution to another. For example, given a perfect
matching (valid but not necessarily stable solution) for an SMP instance, a single step might be to take
any two married pairs (m,w) and (m′, w′) and swap them to get the two married pairs (m,w′) and (m′, w)
(and a new perfect matching).

Then, a solution is "Pareto optimal" if no single step leaves everyone at least as well o� as they were
and at least one person better o� than they were. (In other words, no single step would get at least some
people supporting it and no one opposing it.) In our SMP example, only m, m′, w, and w′ could have their
satisfaction change; so, we're asking if none of them gets a worse partner than before and at least one gets
a better partner.

We'll explore this SMP de�nition of Pareto optimality in this problem.

1. Write in the subscripts (numbers) on the men and women in the list of matchings below to form a
valid but unstable solution to the given SMP instance that is Pareto optimal.

w1: 1 2 m1: 1 2
w2: 2 1 m2: 1 2

Write subscripts in the blanks on this solution: (w ,m ), (w ,m ).

2. If we take a "single step" from this solution, which person gets a worse partner? Fill in the blank
next to the answer.

w1

w2

m1

m2

3. Brie�y explain why avoiding instability is probably a better metric to judge the quality of an SMP
solution than Pareto optimality. (I.e., why might a Pareto optimal but not stable solution be a
problem?)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. Fill in the circle to indicate whether the following statement is always true (true for every situation
matching the scenario), sometimes true (true for at least one situation matching the scenario but
also false for at least one such situation), or never true.

Scenario: P is a stable solution for an SMP instance with n ≥ 3.

Statement: P is Pareto optimal (for that instance).

Always

Sometimes

Never

5. "Weak" Pareto optimality is like "strong" Pareto optimality de�ned above except that a single step
that improves the solution has to make everyone better o� (rather than making at least someone
better o� while making nobody worse o�).

In our SMP application of Pareto optimality, which of the following will always be a "weak" optimum?
Fill in the square next to every correct answer.

An arbitrary valid solution to any SMP instance.

An arbitrary valid solution to any SMP instance with n ≥ 3.

An arbitrary stable solution to any SMP instance.

An arbitrary stable solution to any SMP instance with n ≥ 3.

An arbitrary strong Pareto optimal solution to any SMP instance.

None of these is guaranteed to be a weak optimum.

4 Knowing Your Structures

Each item below describes an operation on a tree data structure. Choose the tightest worst-case running
time for a good implementation of the operation among: O(1), O(lg n), O(n), O(n lg n), O(n2). n represents
the number of items (keys or key/data pairs) in the structure. Note: BST is binary search tree.

1. Find the successor of a node (the node with the next largest key) in an AVL tree.

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

2. Delete a key from a (not necessarily balanced) binary search tree.

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

3. Given two keys k1, k2, count the number of keys x such that k1 < x < k2 in a balanced BST.

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. Determine if a binary tree that claims to be a heap satis�es the heap property.

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

5. Return an array that contains the �rst 150 keys in a B+ tree (i.e., the 150 smallest keys).

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

6. Build a maxHeap from a given array of integers.

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

7. Sort the elements of an array in place using the standard quicksort algorithm.

Worst-case bound:

O(1)

O(lg n)

O(n)

O(n lg n)

O(n2)

5 Choosing Your Structures

For each of the following, choose the data structure that most e�ciently supports a solution of the options:
array, stack, queue, priority queue (implemented as a binary heap), balanced BST (balanced binary
search tree implemented as an AVL tree) and dictionary (dictionary/map implemented as a hash table).
Choose the best answer in each case. If there are multiple best answers, just pick one.

1. Determine the next collision that will happen in a game where balls are bouncing around on a pool
table. You may assume that a function to determine when two balls will collide (assuming they do
not change direction beforehand) has already been written.

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

2. Given a map of a cave (represented as a graph), a starting location (a vertex), and a magic spell that
will a�ect all locations within a given distance from the starting location, determine which locations
will be a�ected by the spell. Note that spells do not penetrate walls.

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3. Given the same cave map inputs as above, and a set of exits (vertices), �nd the path containing the
least number of dangerous creatures from the start to an exit.

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

4. You are building an interpreter for a version of the C language that does not have pointers, and you
need to keep track (by name) of the current value of each global and local variable.

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


5. You are a teaching assistant who is maintaining the current projected �nal grades of the students in
the course. The projections are updated every time a new assigment, quiz or exam grades becomes
known (whether a single updated or a group of simultaneous ones), and you want to be able to return
e�ciently a list of all students whose projected �nal grade lies within a given range (this range is not
�xed, but varies with every query).

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

6. Given a string containing only lowercase alphabetic characters (a�z), determine which character occurs
the most often in the string.

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

7. Given a mathematical expression, determine if it is parenthesized properly. For example, �(((2+3)*5))�
is parenthesized properly, but �(2+4)) + (5� is not.

Best option:
array

stack

queue

priority queue

balanced BST

dictionary

6 Tangling the Knot

A large organization has decided to ensure that each person in the organization has exactly one mentor
and one mentee.1 Both mentors and mentees are drawn from the same set, the employees. To make this
work best, they decide to have each person rank each other person (�rst place, second place, etc.) as their
choice of mentor and, separately, as their choice of mentee.

Now, they want to match mentor/mentee pairs up so that each person has exactly one mentor and each
person has exactly one mentee. We call this problem MMP (the mentor/mentee problem). An instance of
MMP may never have fewer than two employees.

1. Solve the following instance of MMP so that it is never the case that there are two employees a and b
such that a would rather have b as their mentee than the mentee a was assigned, and b would rather
have a as mentor than the mentor b was assigned.

Employee "name" Ranked mentees Ranked mentors

e1 e2, e3 e3, e2
e2 e1, e3 e1, e3
e3 e1, e2 e2, e1

Write subscripts in the blanks to �ll in the solution. We've already given subscripts on the mentors
(the �rst element of each pair): (e1, e ), (e2, e ), (e3, e ).

2. A friend proposes solving MMP via the following reduction, assuming each employee has a unique
employee ID:

Create an SMP instance as follows: Let the set of men M be the �rst half of the employees
by ID. Let the set of womenW be the second half of the employees by ID. Let the preference

1This is their Mentor/Mentee Organization Reneweal ProGram (or MMORPG) and they spend a lot of time playing around
with it.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


lists of men match the �rst half of employees' mentee preferences over the second half of
employees. Let the preference lists of women match the second half of employees' mentor
preferences over the �rst half of employees.

Given a solution to the SMP instance, create the solution to MMP as follows: For a pair
(m,w), let the "�rst-half" employee corresponding to m be a mentor to the "second-half"
employee corresponding to w (the mentee).

Fill in the blank next to each of the following critiques of this reduction that is accurate:

For some instance of MMP, this does not produce a valid instance of SMP.

This can produce an MMP solution with instabilities caused by instabilities in the SMP solution.

This can produce an MMP solution in which some employee has no mentor.

This can produce an MMP solution in which some employee has more than one mentor.

None of these is accurate.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3. Fill in the circle to indicate whether the following statement is always true (true for every situation
matching the scenario), sometimes true (true for at least one situation matching the scenario but
also false for at least one such situation), or never true.

Scenario: P is a valid solution to an instance of MMP.

Statement: There is a path going from mentor to mentee in P (i.e., from a person to the person
who is their mentee and then optionally continuing from that person to their mentee and so on) that
is a cycle.

Always

Sometimes

Never

4. A friend proposes solving MMP via this alternate reduction:

Create an SMP instance as follows: Let the set of men M be the set of employees. Let the
set of women W be a second copy of the set of employees. Let the preference lists of men
match the employees' mentee preferences. Let the preference lists of women match the
employees' mentor preferences.

Given a solution to the SMP instance, create the solution to MMP as follows: For a pair
(m,w), let the employee corresponding to m be a mentor to the employee corresponding to
w (the mentee).

Which of the following should be addressed to complete this reduction? Fill in the blank next to each
correct answer.

Each of the set of men and the set of women is incomplete.

The preference lists (of each of the men and the women) are incomplete.

Two people may end up with the same mentor.

A person may end up as their own mentor.

None of these is accurate.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Looping Back to Asymptotic Analysis
	All Tied Up
	To Re Mi Pa So Ti La Do!
	Knowing Your Structures
	Choosing Your Structures
	Tangling the Knot

