CPSC 320 2017W2: Quiz 2

January 26, 2018

1 Wall-E Loman

If you find a path with no obstacles, it probably doesn’t lead anywhere. — Frank A. Clark

We define TSP just as before: The Traveling Salesperson Optimization Problem (TSP) can defined
as follows: you are given a set {C1,Cy,...,Cy} of cities. For every two cities C;, Cj, there is a cost ¢; ;
for traveling from city Cj to city C; (equal to the cost of travelling from C; to C;). Your job is to find the
lowest cost path that starts at C1, travels through every other city, and returns to C. You are not allowed
to go through a city more than once (except for C which appears both at the start and at the end of your

trip).

1. Write in the blank the number of valid solutions to an instance of TSP with n cities:

2. Imagine that you have a brute force algorithm that builds up a partial path step-by-step as a candidate
solution to TSP. Each time it has visited all other nodes, it returns to 'y and measures the cost of
the solution. Which of the following is a legitimate heuristic you could add to this algorithm to avoid
investigating every valid solution? Fill in the box next to all correct answers.

pick a single arbitrary city besides C; to be the only second city the algorithm considers
always add as the next city in the partial path the cheapest not-yet-visited city to reach
never use the connection between C and its highest-cost neighbor

discard any partial path that is more expensive than the cheapest complete path found so far
discard any partial path of length three like C1,C;, Cj if j >4

.

Turn the page for the next problem!

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. We define HAMCYCLE just as before: The Hamiltonian Cycle Problem (HAMCYCLE) is
defined as follows: Given an undirected graph G = (V, E), where V' = {vy,vs,...,v,}, determine if
there is a simple cycle in the graph that visits all nodes, that is, a permutation v;1,v;2,...,v;, of
V such that (vi,,vi1) € E and for j =1,...,n — 1, (v;;,vij4+1) € E. For instance, in the following
graph, the bolded edges form a Hamiltonian Cycle, but no path that includes the edge a--d is a
Hamiltonian Cycle:

Notice that the solution to HAMCYCLE as we defined it is either "Yes" (meaning there is such a
path) or "No". Fill in the blanks to make a correct reduction from HAMCYCLE to TSP:

Given an instance of HAMCYCLE, G = (V, E), construct an instance of TSP as follows:

For each vertex v;, produce

For each pair of vertices {v;,v;}: If there is an edge {v;,v;} € E, then let =1

Otherwise, let = 2.

Then, given a solution to TSP with total cost k, produce as a solution to HAMCYCLE:

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 The Antepenultimate Jedi

It’s 30 years in the future. You’re working on the prequel to the prequel to The Last Jedi. You want to get
the best stars to draw the most people. For each star, you have a positive number indicating their "draw".

You can hire as many stars as you like. Unfortunately, every actor considers themselves a "big fish",
and big fish won’t work with someone between their own draw and half as much (because it steals too much
of their own spotlight). Specifically, if you include a big fish with draw z, you may not include any other
star with draw k such that § <k <.

1. Imagine you include a star with draw 11. Can you also hire a star with draw 137 Choose the best
answer.

O Yes
O No

O It depends on the remainder of the instance /solution.

2. Write in the box below the total draw of the optimal set of stars to hire if the available stars have
draw: [3,8,20,2,14,6]. (Write only the total, not the individual draws.)

Total draw:

3. Which of these best describes the promise of a greedy approach to this problem?

O o(
O of
O O(n)
O O(lgn)
O o)

O none of these because there is no optimal greedy approach

n?)
nlgn)

An optimal greedy approach runs in:

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

We now alter the problem. In the new version, many actors are not big fish. They’ll work with other
actors as long as they don’t have the exact same draw. The big fish will still not work with any other
actor with draw £ such that § <k <.

The actor with the highest draw overall is automatically a big fish, whether or not they’re in your
movie.

Additionally, any other actor with draw z is a big fish if there is no actor at all (whether or not
they’re in your movie) with draw y such that < y < 2z (corrected from the quiz version).E]

So, for example, if the available stars have draw [8,10,22,3,2,30,4] then 30 (as the highest draw
actor) is a "big fish". 22 is not (because 30 is between 22 and 44). 10 is a "big fish" (because no
other actor has draw between 10 and 20). 8 is not. 4 is a big fish. 3 and 2 are not.

4. Imagine you hire a star with draw 11. Can you also hire a star with draw 137 Choose the best
answer.

O Yes
O No

O It depends on the remainder of the instance /solution.

5. Write in the box below the total draw of the optimal set of stars to hire if the available stars have
draw: [3,8,20,2,14,6]. (Write only the total, not the individual draws.)

Total draw:

6. Below we propose (suboptimal) algorithms to solve this problem. For each algorithm, we provide the
draw of a first actor. Fill in the blanks with the draws of the two remaining actors to complete an
instance that is a counterexample to the algorithm’s optimality. That is, the algorithm will either fail
to produce any valid solution or produce a subpotimal solution.

(a) Iterate through the stars in the order given. For each star, hire them if doing so would not
invalidate the so-far-hired set of stars.

Actor 1: 10. Actor 2: . Actor 3:

(b) Sort the stars in decreasing order of draw. Iterate through the sorted stars. For each star, hire
them if doing so would not invalidate the so-far-hired set of stars.

Actor 1: 10. Actor 2: . Actor 3:

(c) Sort the stars in decreasing order of draw. Iterate through the sorted stars. Hire the first
(biggest) star. Then, for each subsequent star, hire them unless they are a big fish (in which
case, skip them).

Actor 1: 10. Actor 2: . Actor 3:

!They’re a big fish in a little pond.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Blue, Gold, and Green

For its Blue-and-Gold fundraising campaign, UBC has found anchors—major donors, each with a limit
(maximum amount they will donate)—and causes to which the anchors will donateﬂ Each cause has a
goal, the maximum money that will go to the cause. An anchor donates to at most one cause, a cause
receives donations from at most one anchor, and the amount of an anchor’s donation is the minimum of
their limit and the cause’s goal. We call this the Blue-and-Gold Problem or BGP. A BGP instance’s solution
is the maximum dollar amount that can be raised. (Assume limits are distinct, as are goals.)

1. Let the anchors ay,az,as, aq have limits 10,100, 30, 40, respectively. Let the causes ci,ca,c3 have
goals 50, 80, 10, respectively. Fill in the blank below with the maximum amount UBC can raise.

Maximum amount raised: $

2. Complete the following reduction from BGP to USMP so that it is correct and optimal (if not
necessarily efficient). Reminder: USMP is SMP except that there may be fewer women than men.

If there are , let the women and men be

, respectively. Otherwise, let the women and men be

, respectively.

An anchor ay, prefers cause ¢; to cause c¢; exactly when

A cause ¢y, prefers anchor a; to anchor a; exactly when:

Given the USMP solution (set of pairs), produce as a solution to the BGP problem:

2And which are then named for them, like the Belleville Urban Beautification Project or Wolfman Lunar Research Fund.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

For this page, all details of the problem above remain the same (including that each anchor will
donate to at most one cause) except that we can now assign any number of anchors to a single cause.

. Let the anchors ai,as, as, as have limits 10,100, 30, 40, respectively. Let the causes ¢y, co,c3 have
goals 50, 80, 10, respectively. Fill in the blank below with the maximum amount UBC can raise.

Maxmimum amount raised: $

. Below we propose (suboptimal) algorithms to solve this problem. For each algorithm, we have provided
a list of anchor limits. Fill in the blanks with two cause goals to complete an instance that is a
counterexample to the algorithm’s optimality. That is, the algorithm will either fail to produce any
valid solution or produce a suboptimal solution.

Notes: (1) We use "limit" and "anchor" interchangeably. (2) All of these algorithms do the "right"
thing when matching an anchor to a goal: They let the anchor donate the minimum of their limit
and the money remaining before the goal is met and then update the money remaining for that goal.

(a) Tterate through the anchors in the order given. For each anchor, assign them to the cause with
the most money still left before reaching its goal.

Anchor 1: 100. Anchor 2: 50. Anchor 3: 200.

Goal 1: . Goal 2:

(b) Sort the goals in decreasing order. Iterate through the goals, matching each with the largest
anchor who has not already been assigned a goal.

Anchor 1: 100. Anchor 2: 50. Anchor 3: 200.

Goal 1: . Goal 2:

(¢) Sort each of the limits and the goals in decreasing order. Iterate through the anchors, matching
each with the first remaining goal. (Remove a goal when its fundraising target has been met.)

Anchor 1: 100. Anchor 2: 50. Anchor 3: 200.

Goal 1: . Goal 2:

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 Oh Oh Oh

1. Write a good big-O bound on the worst case running time of the following algorithm (as a function
of both n and m) in the provided box:

function intersectionl(X, Y)
z=4{1
m = length(X)
n = length(Y)
for i =0 tom - 1:
// assume a typical binary search, which returns
// -1 if the target element is not found
if binarysearch(Y, X[i]) !'= -1:
add X[i] to Z

Worst-case runtime in terms of n and m:

2. intersectionl is intended to produce a list of the elements that are in both X and Y. Under what
conditions does it work correctly? Fill in the circle next to the best choice.

O when X is sorted (but not necessarily Y)
O when Y is sorted (but not necessarily X)
O when X and Y are both sorted

O for any input lists X and Y

3. Write a good big-O bound on the worst case running time of the following algorithm (as a function
of both n and m) in the provided box:

function drop(m, n):
while (m > 0 or n > 0):
print l|(|| + m + ||’|| + n + ||)||

if (m > 0):
m=m-1

if (n > 0):
n=n-1

Worst-case runtime in terms of n and m:

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4. Write a good big-O bound on the worst case running time of the following algorithm (as a function
of both n and m) in the provided box:

function intersection2(X, Y)

z=4{1
i=j=0

m = length(X)
n = length(Y)

while i < m and j < n:
if X[i] < Y[j]:

i=1i+1
elsif X[i]l > Y[j1:

j=3+1
else:

add X[i] to Z

i=1+1

i=itt

Worst-case runtime in terms of n and m:

5. intersection?2 is also intended to produce a list of the elements that are in both X and Y. Under
what conditions does it work correctly? Fill in the circle next to the best choice.

O when X is sorted (but not necessarily Y)
O when Y is sorted (but not necessarily X)
O when X and Y are both sorted

O for any input lists X and Y

6. Which sentence best characterizes the relative performance of intersectionl and intersection2?
Fill in the circle next to the best choice.
O function intersectioni is almost always slower than function intersection2.
O function intersectioni is almost always faster than function intersection2.
(O each of the two functions can be faster than the other depending on size of the two arrays.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5 0O’d to a Pair of Runtimes

The pairs of functions below represent algorithm runtimes on a dense, undirected graph and a simple path
in that graph of length k. (A dense graph has m € ©(n?). A simple path of length k is a list of k + 1
vertices where each subsequent pair of vertices is connected by an edge and no vertex appears more than
once in the list.) ASSUME £k > 0. For each pair, fill in the circle next to the best choice of:

LEFT: the left function is big-O of the right, i.e., left € O(right)

RIGHT: the right function is big-O of the left, i.e., right € O(left)

SAME: the two functions are © of each other, i.e., left € ©(right)

INCOMPARABLE: none of the previous relationships holds for all allowed values of n and m.

Do not choose LEFT or RIGHT if SAME is true. The first one is filled in for you.

Left Function Right Function Answer

n n? LEFT
n k O LEFT

O RIGHT

O SAME

O INCOMPARABLE
k m O LEFT

O RIGHT

O SAME

O INCOMPARABLE
nlg(knm) nlg(k*) + vm (O LEFT

O RIGHT

O SAME

O INCOMPARABLE
9logigm on O LEFT

O RIGHT

O SAME

O INCOMPARABLE

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Left Function Right Function Answer
(k+m)(n+k) m? O LEFT

O RIGHT

O SAME

O INCOMPARABLE
1 m O LEFT

O RIGHT

O SAME

O INCOMPARABLE
n?lg(n?) k3 +mlgm O LEFT

O RIGHT

O SAME

O INCOMPARABLE
m 2 O LEFT

O RIGHT

O SAME

O INCOMPARABLE

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6

eXtreme True And/Or False

Fach of the following problems presents a scenario in a graph and a statement about that scenario. For
each one, indicate by filling in the appropriate circle whether:

1.

2.

3.

The statement is ALWAYS true, i.e., true in every graph matching the scenario.

The statement is SOMETIMES true, i.e., true in some graph matching the scenario but also false
in some such instance.

The statement is NEVER true, i.e., true in none of the graphs matching the scenario.

Recall: |V| = n,|E| = m. A vertex’s degree is the number of edges incident on it. For directed graphs, a
vertex’s in-degree is the number of edges ending at the vertex and the out-degree is the number starting
from it. A path of length k is a list of £+ 1 vertices with an edge between each consecutive pair of vertices.
A simple path repeats no vertex. A cycle is a path that starts and ends at the same vertex. A simple cycle
repeats no vertex other than the starting/end vertex (which only appears twice). Unless stated otherwise,
we assume graphs have no self-loops (edges from a vertex to itself).

1.

Scenario: An undirected graph contains two simple paths that share no edges, each of length k for
some integer k > 2. Statement: n > k + 1.

(O ALWAYS
O SOMETIMES
(O NEVER

n

. Scenario: An undirected graph with n > 2 and at least TQ edges. Statement: The graph is

connected.

O ALWAYS

O SOMETIMES
O NEVER

. Scenario: A tree (undirected) found by DFS run on a connected, undirected graph with n > 2.

Statement: The degree of every node in the tree is two or less.
O ALWAYS

O SOMETIMES

O NEVER

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4. Scenario: A weakly-connected but not strongly-connected, directed graph with n > 2. Statement:
A simple cycle of length n + 1 exists.

O ALWAYS
O SOMETIMES
O NEVER
5. Scenario: A directed graph contains two simple paths that share no edges, each of length k for some
integer k > 2. Statement: n > k.
O ALWAYS
O SOMETIMES
O NEVER
6. Scenario: A connected, undirected graph with n > 3. Statement: The graph includes at least 2™
different simple cycles.
O ALWAYS
O SOMETIMES
O NEVER

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Wall-E Loman
	The Antepenultimate Jedi
	Blue, Gold, and Green
	Oh Oh Oh
	O'd to a Pair of Runtimes
	eXtreme True And/Or False

