
CPSC 320 2017W2: Quiz 2 Sample Solutions

January 27, 2018

1 Wall-E Loman

If you �nd a path with no obstacles, it probably doesn't lead anywhere. � Frank A. Clark

We de�ne TSP just as before: The Traveling Salesperson Optimization Problem (TSP) can de�ned
as follows: you are given a set {C1, C2, . . . , Cn} of cities. For every two cities Ci, Cj , there is a cost ci,j
for traveling from city Ci to city Cj (equal to the cost of travelling from Cj to Ci). Your job is to �nd the
lowest cost path that starts at C1, travels through every other city, and returns to C1. You are not allowed
to go through a city more than once (except for C1 which appears both at the start and at the end of your
trip).

1. Write in the blank the number of valid solutions to an instance of TSP with n cities:

2. Imagine that you have a brute force algorithm that builds up a partial path step-by-step as a candidate
solution to TSP. Each time it has visited all other nodes, it returns to C1 and measures the cost of
the solution. Which of the following is a legitimate heuristic you could add to this algorithm to avoid
investigating every valid solution? Fill in the box next to all correct answers.

pick a single arbitrary city besides C1 to be the only second city the algorithm considers

always add as the next city in the partial path the cheapest not-yet-visited city to reach

never use the connection between C1 and its highest-cost neighbor

discard any partial path that is more expensive than the cheapest complete path found so far

discard any partial path of length three like C1, Ci, Cj if j > i

Turn the page for the next problem!

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3. We de�ne HAMCYCLE just as before: The Hamiltonian Cycle Problem (HAMCYCLE) is
de�ned as follows: Given an undirected graph G = (V,E), where V = {v1, v2, . . . , vn}, determine if
there is a simple cycle in the graph that visits all nodes, that is, a permutation vi,1, vi,2, . . . , vi,n of
V such that (vi,n, vi,1) ∈ E and for j = 1, . . . , n − 1, (vi,j , vi,j+1) ∈ E. For instance, in the following
graph, the bolded edges form a Hamiltonian Cycle, but no path that includes the edge a--d is a
Hamiltonian Cycle:

Notice that the solution to HAMCYCLE as we de�ned it is either "Yes" (meaning there is such a
path) or "No". Fill in the blanks to make a correct reduction from HAMCYCLE to TSP:

Given an instance of HAMCYCLE, G = (V,E), construct an instance of TSP as follows:

For each vertex vi, produce .

For each pair of vertices {vi, vj}: If there is an edge {vi, vj} ∈ E, then let = 1.

Otherwise, let = 2.

Then, given a solution to TSP with total cost k, produce as a solution to HAMCYCLE:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

1.1 Quiz Solutions

1. (n− 1)!

2. Only "discard any partial path that is more expensive than the cheapest complete path found so far".

3. For each vertex vi, produce: a city Ci

If there is an edge {vi, vj}, then let ci,j = cj,i = 1.

Otherwise, let ci,j = cj,i = 2.

(Fine to list just ci,j or just cj,i.)

Given a solution to TSP with cost k, produce "Yes" if and only if k = |V |.

2 The Antepenultimate Jedi

It's 30 years in the future. You're working on the prequel to the prequel to The Last Jedi. You want to get
the best stars to draw the most people. For each star, you have a positive number indicating their "draw".

You can hire as many stars as you like. Unfortunately, every actor considers themselves a "big �sh",
and big �sh won't work with someone between their own draw and half as much (because it steals too much
of their own spotlight). Speci�cally, if you include a big �sh with draw x, you may not include any other
star with draw k such that x

2 < k ≤ x.

1. Imagine you include a star with draw 11. Can you also hire a star with draw 13? Choose the best
answer.

Yes

No

It depends on the remainder of the instance/solution.

2. Write in the box below the total draw of the optimal set of stars to hire if the available stars have
draw: [3, 8, 20, 2, 14, 6]. (Write only the total, not the individual draws.)

Total draw:

3. Which of these best describes the promise of a greedy approach to this problem?

An optimal greedy approach runs in:

O(n2)

O(n lg n)

O(n)

O(lg n)

O(1)

none of these because there is no optimal greedy approach

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

We now alter the problem. In the new version, many actors are not big �sh. They'll work with other
actors as long as they don't have the exact same draw. The big �sh will still not work with any other
actor with draw k such that x

2 < k ≤ x.

The actor with the highest draw overall is automatically a big �sh, whether or not they're in your
movie.

Additionally, any other actor with draw x is a big �sh if there is no actor at all (whether or not
they're in your movie) with draw y such that x < y < 2x (corrected from the quiz version).1

So, for example, if the available stars have draw [8, 10, 22, 3, 2, 30, 4] then 30 (as the highest draw
actor) is a "big �sh". 22 is not (because 30 is between 22 and 44). 10 is a "big �sh" (because no
other actor has draw between 10 and 20). 8 is not. 4 is a big �sh. 3 and 2 are not.

4. Imagine you hire a star with draw 11. Can you also hire a star with draw 13? Choose the best
answer.

Yes

No

It depends on the remainder of the instance/solution.

5. Write in the box below the total draw of the optimal set of stars to hire if the available stars have
draw: [3, 8, 20, 2, 14, 6]. (Write only the total, not the individual draws.)

Total draw:

6. Below we propose (suboptimal) algorithms to solve this problem. For each algorithm, we provide the
draw of a �rst actor. Fill in the blanks with the draws of the two remaining actors to complete an
instance that is a counterexample to the algorithm's optimality. That is, the algorithm will either fail
to produce any valid solution or produce a subpotimal solution.

(a) Iterate through the stars in the order given. For each star, hire them if doing so would not
invalidate the so-far-hired set of stars.

Actor 1: 10. Actor 2: . Actor 3: .

(b) Sort the stars in decreasing order of draw. Iterate through the sorted stars. For each star, hire
them if doing so would not invalidate the so-far-hired set of stars.

Actor 1: 10. Actor 2: . Actor 3: .

(c) Sort the stars in decreasing order of draw. Iterate through the sorted stars. Hire the �rst
(biggest) star. Then, for each subsequent star, hire them unless they are a big �sh (in which
case, skip them).

Actor 1: 10. Actor 2: . Actor 3: .

1They're a big �sh in a little pond.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

2.1 Quiz Solutions

1. No.

2. 31

3. O(n lg n)

4. It depends on the remaining stars available.

5. 37

6. There are many correct responses to each one. Here are examples:

(a) [10, 11, 1]

(b) [10, 12, 9]

(c) [10, 5, 1]

3 Blue, Gold, and Green

For its Blue-and-Gold fundraising campaign, UBC has found anchors�major donors, each with a limit

(maximum amount they will donate)�and causes to which the anchors will donate.2 Each cause has a
goal, the maximum money that will go to the cause. An anchor donates to at most one cause, a cause
receives donations from at most one anchor, and the amount of an anchor's donation is the minimum of
their limit and the cause's goal. We call this the Blue-and-Gold Problem or BGP. A BGP instance's solution
is the maximum dollar amount that can be raised. (Assume limits are distinct, as are goals.)

1. Let the anchors a1, a2, a3, a4 have limits 10, 100, 30, 40, respectively. Let the causes c1, c2, c3 have
goals 50, 80, 10, respectively. Fill in the blank below with the maximum amount UBC can raise.

Maximum amount raised: $

2. Complete the following reduction from BGP to USMP so that it is correct and optimal (if not
necessarily e�cient). Reminder: USMP is SMP except that there may be fewer women than men.

If there are , let the women and men be

, respectively. Otherwise, let the women and men be

, respectively.

An anchor ak prefers cause ci to cause cj exactly when .

A cause ck prefers anchor ai to anchor aj exactly when: .

Given the USMP solution (set of pairs), produce as a solution to the BGP problem:

2And which are then named for them, like the Belleville Urban Beauti�cation Project or Wolfman Lunar Research Fund.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

For this page, all details of the problem above remain the same (including that each anchor will
donate to at most one cause) except that we can now assign any number of anchors to a single cause.

3. Let the anchors a1, a2, a3, a4 have limits 10, 100, 30, 40, respectively. Let the causes c1, c2, c3 have
goals 50, 80, 10, respectively. Fill in the blank below with the maximum amount UBC can raise.

Maxmimum amount raised: $

4. Below we propose (suboptimal) algorithms to solve this problem. For each algorithm, we have provided
a list of anchor limits. Fill in the blanks with two cause goals to complete an instance that is a
counterexample to the algorithm's optimality. That is, the algorithm will either fail to produce any
valid solution or produce a suboptimal solution.

Notes: (1) We use "limit" and "anchor" interchangeably. (2) All of these algorithms do the "right"
thing when matching an anchor to a goal: They let the anchor donate the minimum of their limit
and the money remaining before the goal is met and then update the money remaining for that goal.

(a) Iterate through the anchors in the order given. For each anchor, assign them to the cause with
the most money still left before reaching its goal.

Anchor 1: 100. Anchor 2: 50. Anchor 3: 200.

Goal 1: . Goal 2: .

(b) Sort the goals in decreasing order. Iterate through the goals, matching each with the largest
anchor who has not already been assigned a goal.

Anchor 1: 100. Anchor 2: 50. Anchor 3: 200.

Goal 1: . Goal 2: .

(c) Sort each of the limits and the goals in decreasing order. Iterate through the anchors, matching
each with the �rst remaining goal. (Remove a goal when its fundraising target has been met.)

Anchor 1: 100. Anchor 2: 50. Anchor 3: 200.

Goal 1: . Goal 2: .

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3.1 Quiz Solution

1. 130

2. If there are fewer limits than goals, let the women and men be limits and goals . . . otherwise . . .
goals and limits.

Both anchors and causes prefer larger values. (I.e., ak prefers ci to cj exactly when ci > cj .)

Produce the sum over each pair (ai, cj) or (cj , ai) of min ai, cj .

3. 140

4. There are many correct responses to each one. Here are examples:

(a) [100, 200]

(b) [1000, 2000]

(c) [250, 150]

4 Oh Oh Oh

1. Write a good big-O bound on the worst case running time of the following algorithm (as a function
of both n and m) in the provided box:

function intersection1(X, Y)

Z = { }

m = length(X)

n = length(Y)

for i = 0 to m - 1:

// assume a typical binary search, which returns

// -1 if the target element is not found

if binarysearch(Y, X[i]) != -1:

add X[i] to Z

Worst-case runtime in terms of n and m:

2. intersection1 is intended to produce a list of the elements that are in both X and Y. Under what
conditions does it work correctly? Fill in the circle next to the best choice.

when X is sorted (but not necessarily Y)

when Y is sorted (but not necessarily X)

when X and Y are both sorted

for any input lists X and Y

3. Write a good big-O bound on the worst case running time of the following algorithm (as a function
of both n and m) in the provided box:

function drop(m, n):

while (m > 0 or n > 0):

print "(" + m + "," + n + ")"

if (m > 0):

m = m - 1

if (n > 0):

n = n - 1

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

Worst-case runtime in terms of n and m:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4. Write a good big-O bound on the worst case running time of the following algorithm (as a function
of both n and m) in the provided box:

function intersection2(X, Y)

Z = { }

i = j = 0

m = length(X)

n = length(Y)

while i < m and j < n:

if X[i] < Y[j]:

i = i + 1

elsif X[i] > Y[j]:

j = j + 1

else:

add X[i] to Z

i = i + 1

j = j + 1

Worst-case runtime in terms of n and m:

5. intersection2 is also intended to produce a list of the elements that are in both X and Y. Under
what conditions does it work correctly? Fill in the circle next to the best choice.

when X is sorted (but not necessarily Y)

when Y is sorted (but not necessarily X)

when X and Y are both sorted

for any input lists X and Y

6. Which sentence best characterizes the relative performance of intersection1 and intersection2?
Fill in the circle next to the best choice.

function intersection1 is almost always slower than function intersection2.

function intersection1 is almost always faster than function intersection2.

each of the two functions can be faster than the other depending on size of the two arrays.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4.1 Quiz Solution

1. O(m lg n)

2. when Y is sorted (but not necessarily X)

3. O(m + n)

4. O(m + n)

5. when X and Y are both sorted

6. each of the two can be faster

5 O'd to a Pair of Runtimes

The pairs of functions below represent algorithm runtimes on a dense, undirected graph and a simple path
in that graph of length k. (A dense graph has m ∈ Θ(n2). A simple path of length k is a list of k + 1
vertices where each subsequent pair of vertices is connected by an edge and no vertex appears more than
once in the list.) ASSUME k > 0. For each pair, �ll in the circle next to the best choice of:

LEFT: the left function is big-O of the right, i.e., left ∈ O(right)

RIGHT: the right function is big-O of the left, i.e., right ∈ O(left)

SAME: the two functions are Θ of each other, i.e., left ∈ Θ(right)

INCOMPARABLE: none of the previous relationships holds for all allowed values of n and m.

Do not choose LEFT or RIGHT if SAME is true. The �rst one is �lled in for you.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

Left Function Right Function Answer

n n2 LEFT

n k LEFT

RIGHT

SAME

INCOMPARABLE

k m LEFT

RIGHT

SAME

INCOMPARABLE

n lg(knm) n lg(k4) +
√
m LEFT

RIGHT

SAME

INCOMPARABLE

2log10 m 2n LEFT

RIGHT

SAME

INCOMPARABLE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

Left Function Right Function Answer

(k + m)(n + k) m2 LEFT

RIGHT

SAME

INCOMPARABLE

1 m
lg k LEFT

RIGHT

SAME

INCOMPARABLE

n2 lg(n2) k3 + m lgm LEFT

RIGHT

SAME

INCOMPARABLE

m k2 LEFT

RIGHT

SAME

INCOMPARABLE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

5.1 Quiz Solution

1. RIGHT

2. LEFT

3. RIGHT

4. LEFT

5. LEFT

6. LEFT (we will accept incomparable, but it is not the best answer)

7. SAME

8. RIGHT

6 eXtreme True And/Or False

Each of the following problems presents a scenario in a graph and a statement about that scenario. For
each one, indicate by �lling in the appropriate circle whether:

1. The statement is ALWAYS true, i.e., true in every graph matching the scenario.

2. The statement is SOMETIMES true, i.e., true in some graph matching the scenario but also false
in some such instance.

3. The statement is NEVER true, i.e., true in none of the graphs matching the scenario.

Recall: |V | = n, |E| = m. A vertex's degree is the number of edges incident on it. For directed graphs, a
vertex's in-degree is the number of edges ending at the vertex and the out-degree is the number starting
from it. A path of length k is a list of k + 1 vertices with an edge between each consecutive pair of vertices.
A simple path repeats no vertex. A cycle is a path that starts and ends at the same vertex. A simple cycle

repeats no vertex other than the starting/end vertex (which only appears twice). Unless stated otherwise,
we assume graphs have no self-loops (edges from a vertex to itself).

1. Scenario: An undirected graph contains two simple paths that share no edges, each of length k for
some integer k ≥ 2. Statement: n > k + 1.

ALWAYS

SOMETIMES

NEVER

2. Scenario: An undirected graph with n ≥ 2 and at least n2

4 edges. Statement: The graph is
connected.

ALWAYS

SOMETIMES

NEVER

3. Scenario: A tree (undirected) found by DFS run on a connected, undirected graph with n ≥ 2.
Statement: The degree of every node in the tree is two or less.

ALWAYS

SOMETIMES

NEVER

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4. Scenario: A weakly-connected but not strongly-connected, directed graph with n ≥ 2. Statement:
A simple cycle of length n + 1 exists.

ALWAYS

SOMETIMES

NEVER

5. Scenario: A directed graph contains two simple paths that share no edges, each of length k for some
integer k ≥ 2. Statement: n > k.

ALWAYS

SOMETIMES

NEVER

6. Scenario: A connected, undirected graph with n ≥ 3. Statement: The graph includes at least 2n

di�erent simple cycles.

ALWAYS

SOMETIMES

NEVER

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

6.1 Quiz Solution

1. SOMETIMES

2. SOMETIMES

3. SOMETIMES

4. NEVER

5. ALWAYS

6. SOMETIMES

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Wall-E Loman
	Quiz Solutions

	The Antepenultimate Jedi
	Quiz Solutions

	Blue, Gold, and Green
	Quiz Solution

	Oh Oh Oh
	Quiz Solution

	O'd to a Pair of Runtimes
	Quiz Solution

	eXtreme True And/Or False
	Quiz Solution

