
CPSC 320 Notes, The Stable Marriage Problem

January 2, 2018

The major goal of CPSC 320 is, of course, romantic advice. That's a heavy topic over which to meet
your classmates. So, we use candy and baked goods to stand in for love (a surprisingly common proxy).

Get in a group of three. Each of you write down your preferences (on one shared worksheet) among
the candies Hi-Chews, Jolly Ranchers, and M&Ms and, separately, among the baked good brownies,
ginger spice cookies, and shortbread cookies.

Person's name Candy Preferences Baked Good Preferences

1:

2:

3:

Now, get to know your group by telling the story of your best experience in a course. Once we're
done with the activity, we'll explore the stable marriage problem (SMP) using your tasty preferences.
(Speci�cally, you'll use your table above to create the preferences for a group of three women and three
men in the stable marriage problem.)

1 Trivial and Small Instances

1. Write down all the trivial instances of SMP. We think of an instance as "trivial" roughly if its solution
requires no real reasoning about the problem.

People tend to stop at the end of the page instead of going on. GO ON UNTIL YOU'RE STUCK!

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Write down two small instances of SMP. One should be based on your candy/baked goods example
above:

The other can be even smaller, but not trivial:

2 Represent the Problem

1. What are the quantities that matter in this problem? Give them short, usable names.

2. Go back up to your trivial and small instances and rewrite them using these names.

3. Describe using your representational choices above what a valid instance looks like:

(Still and always go to the next page if you �nish early! There are even challenge problems at the end.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3 Represent the Solution

1. What are the quantities that matter in the solution to the problem? Give them short, usable names.

2. Describe using these quantities what makes a solution valid and good:

3. Go back up to your trivial and small instances and write out one or more solutions to each using
these names.

4. Draw at least one solution. (We would normally ask you to draw an instance as well, but SMP isn't
an especially graphical problem!)

4 Similar Problems

As the course goes on, we'll have more and more problems we can compare against, but you've already
learned some. So. . .

Give at least one problem you've seen before that seems related in terms of its surface features ("story"),
problem or solution structure, or representation to this one:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


5 Brute Force?

You should usually start on any algorithmic problem by using "brute force": generate all possible solutions
and test each one to see if it is, in fact, the solution we're looking for.

1. A possible SMP solution takes the form of a perfect matching: a pairing of each woman with exactly
one man. We'll call a perfect matching a "valid" (but not necessarily good) solution.

It's more di�cult than the usual brute force algorithm to produce all possible perfect matchings;
instead, we'll count how many there are. Imagine lining all the men up in a row in a particular order.
How many di�erent ways we can line up (permute) the women next to them?

(This is the number of "valid solutions". Note that to solve this, you must also choose a way to
measure the size of an instance and give it a name. Naming things is incredibly important. Do it!)

2. Once we have a possible solution, we must test whether it's the solution we're looking for. Informally,
we'll refer to this as asking whether it's a "good" solution.

A perfect matching is a good solution if it has no instabilities. Design a (brute force!) algorithm
that�given an instance of SMP and a perfect matching�determines whether that perfect matching
contains an instability. (As always, it helps to give a name to your algorithm and its parameters,
especially if your algorithm is recursive. Remember, for brute force: generate each possible solution
(possible instability, in this case) and then test whether it really is a solution. Be careful: a possible
instability is two people who would rather be married to each other than their partners, not an
already-married couple.)

3. Exactly or asymptotically, how long does your algorithm take? (Again, you should explicitly name
the size of an instance and perform your analysis in terms of that name!)

4. Brute force would generate each valid solution and then test whether it's good. Will brute force be
su�cient for this problem for the domains we're interested in?

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


6 Promising Approach

Unless brute force is good enough, describe�in as much detail as you can�an approach that looks promis-
ing.

7 Challenge Your Approach

1. Carefully run your algorithm on your instances above. (Don't skip steps or make assumptions;
you're debugging!) Analyse its correctness and performance on these instances:

2. Design an instance that speci�cally challenges the correctness (or performance) of your algorithm.
This time, we suggest designing an instance with n = 3 to be solved by G-S with men proposing
where either the maximum number of proposals is made or men get as bad an outcome as possible.

8 Repeat!

Hopefully, we've already bounced back and forth between these steps in today's worksheet! You usually
will have to. Especially repeat the steps where you generate instances and challenge your approach(es).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


9 Challenge Problems

These are just for fun and are rated easy/medium/hard as a scale of di�culty for challenge problems

with no guidance. "Easy" is already plenty hard enough.

1. Easy (and well worth doing!): Design an algorithm to generate each possible perfect matching between
n men and n women. (As always, it will help tremendously to start by giving your algorithm and its
parameters names! Your algorithm will almost certainly be recursive.)

2. Easy: Prove that a man willing to pay another man to lie about his preferences can improve his own
result in the "man-oriented" G-S algorithm.

3. Medium: A "local search" algorithm might pick a matching and then "repair" instabilities one at
a time by pairing the couple causing the instability and their spurned partners. Use the smallest
possible instance to show how bad this algorithm can get.

4. Medium: Design a scalable SMP instance that forces the G-S algorithm to take its maximum possible
number of iterations. How many is that? (A "scalable instance" is really an algorithm that takes a
size and produces an instance of that size, just like the "input" in worst case analysis is scalable to
any n.)

5. Hard: Prove that no set of men can collaborate to lie about their preferences and improve all of
their results in the man-oriented G-S algorithm.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Trivial and Small Instances
	Represent the Problem
	Represent the Solution
	Similar Problems
	Brute Force?
	Promising Approach
	Challenge Your Approach
	Repeat!
	Challenge Problems

