CPSC 320 Little-o/Little- ω Overview

January 18, 2018

Big O, Θ , and Ω are **roughly** equivalent to asymptotic \leq , =, and \geq comparisons on functions. That naturally leaves analogues of < and > to define.

1 Formal Definitions via Logic

A function f(n) is little-o of another function g(n)—i.e., $f(n) \in o(g(n))$ —exactly when: for all positive real numbers c, there is a positive integer n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$.

That's a lot like the big-O definition, except that c is not a constant chosen to favor g. Instead, g has to be able to "handle" any constant c: for **every** possible scaling factor (including very small ones like $\frac{1}{10000}$), once n is large enough, g(n) is **still** bigger than f(n).

Little- ω is exactly the converse definition. For our purposes, $f(n) \in \omega(g(n))$ exactly when $g(n) \in o(f(n))$.

2 Formal Definitions via Limits

A **very** handy tool is to compare the ratios of two functions: $\frac{f(n)}{g(n)}$. This can tell you quite a bit about how they compare asymptotically.

In particular (for cases where the limit is well-defined):

- 1. If $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$, then $g(n) \in o(f(n))$ and $f(n) \in \omega(g(n))$.
- 2. If $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$, then $f(n)\in o(g(n))$ and $g(n)\in \omega(f(n))$. (Notice that this just means $\lim_{n\to\infty}\frac{g(n)}{f(n)}=\infty$.)
- 3. If $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some constant real number 0 < c, then $f(n) \in \Theta(g(n))$ (and so $g(n) \in \Theta(f(n))$).

It turns out we can prove that the limit definitions are equivalent to the logical definitions above (since limits also have quantifier-based definitions!). With a bit of calculus (remind yourself of "L'Hôpital's Rule"), using the limits technique is often **much** easier than using the logical definitions.

Try these out to compare: n+3, 3n, n^2-1 , and 2^n .

3 Little-o is Not Really Big-O But Not Θ