
CPSC 320 2017W2: Quiz 3 Blanks

1 Ol' McDonald is safer, he hi he hi ho

1.1 Ol' McDonald is safer, he hi he hi ho (Group)

The manager in a McDonald's comes to you with the following problem: she is in charge of a group of
n workers. Each worker works one shift each day of the week (i.e., a particular worker works from the
same start time to the same �nish time each day, though two di�erent workers may work di�erent times).
There can be multiple shifts happening at once. Assume that no shift starts before midnight or ends after
midnight and that shifts overlap even if they just "meet" at their start or end times.

The manager is trying to choose a subset of these n workers to form a safety committee that she can
meet with once a week. She considers such a committee to be complete if, for every worker X not on the
committee, X's shift overlaps at least partially the shift of some worker who is on the committee. In this
way, each worker's obedience to safety protocols can be observed by at least one person who is serving on
the committee.

Example: Suppose that n = 3 and the shifts are

� Worker A: 0:00 to 10:00

� Worker B: 7:00 to 19:00

� Worker C: 12:00 to 23:59

then the smallest complete safety committee would consist of just worker B since the second shift overlaps
both the �rst and the third.

1. Consider the following algorithm to produce a complete safety committee containing as few workers
as possible.

Each worker's shift is an interval. Suppose that Ix is the interval with the earliest �nishing
time (we will de�ne time 0 as being midnight). We �nd all intervals that contain Ix's �nishing
time, and choose the interval Iy with the latest �nishing time among those as part of the safety
committee. We then delete all intervals that overlap Iy (including Iy), and repeat the operation
until no intervals are left.

Give an example that shows that this algorithm is not optimal.

2. Describe brie�y in words an e�cient algorithm that takes the schedule of n shifts and produces a
complete safety committee containing as few workers as possible.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1.2 Ol' McDonald is safer, he hi he hi ho (Individual)

As in the group stage: The manager in a McDonald's comes to you with the following problem: she
is in charge of a group of n workers. Each worker works one shift each day of the week (i.e., a particular
worker works from the same start time to the same �nish time each day, though two di�erent workers may
work di�erent times). There can be multiple shifts happening at once. Assume that no shift starts before
midnight and ends after midnight and that shifts overlap even if they just "meet" at their start or end
times.

The manager is trying to choose a subset of these n workers to form a safety committee that she can
meet with once a week. She considers such a committee to be complete if, for every worker X not on the
committee, X's shift overlaps at least partially the shift of some worker who is on the committee. In this
way, each worker's obedience to safety protocols can be observed by at least one person who is serving on
the committee.

Example: Suppose that n = 3 and the shifts are

� Worker A: 0:00 to 10:00

� Worker B: 7:00 to 19:00

� Worker C: 12:00 to 23:59

then the smallest complete safety committee would consist of just worker B since the second shift overlaps
both the �rst and the third.

Moving on to new questions:

1. Describe two trivial instances for this problem and their solutions.

(a) Instance: , Solution:

(b) Instance: , Solution:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2. One correct and e�cient algorithm to solve this problem sorts the endpoints of the shifts in increasing
order and then iterates through them making greedy choices (left unspeci�ed here) of whether to
include people in the safety committee. We will call a shift s covered if the worker for shift s is in
the safety committee, or isn't but s overlaps a shift whose worker is in the safety committee. A shift
that is not covered will be called uncovered.

Which data structure(s) will this algorithm need to maintain as it is iterating through the endpoints
of the shifts? Assume that p is the shift endpoint currently being processed. Fill in the box next to
all statements that apply.

A list of all covered shifts.

A list of all uncovered shifts.

The shifts S1, . . . , Sj whose workers were added to the safety committee so far.

A list of the covered shifts whose starting time is after Sj 's �nishing time, but no later than p.

A list of the uncovered shifts whose starting time is after Sj 's �nishing time, but no later than p.

3. Which of the following is the best lower bound on the running time of the algorithm mentioned in
the previous question?

Ω(log n)

Ω(n)

Ω(n log n)

Ω(n2)

Ω(n2 log n)

None of these is a lower bound.

4. Let S1, . . . , Sk be the set of shifts returned by the greedy algorithm. Assume without loss of generality
that S1, . . . , Sk is sorted by �nishing times. Also, let T1, . . . , Tm be the shifts in a smallest safety
committee, sorted by increasing �nishing time. We will denote the starting and �nishing times of
shift x by s(x) and f(x) respectively.

Which of the following statements would it be useful to prove as part of a proof that the greedy
algorithm is optimal? Fill in the box next to all statements that apply.

k < m

k ≤ m

k ≥ m

For j = 1, . . . , k, s(Sj) ≥ s(Tj).

For j = 1, . . . , k, f(Sj) ≥ f(Tj).

For j = 1, . . . ,m, s(Sj) ≥ s(Tj).

For j = 1, . . . ,m, f(Sj) ≥ f(Tj).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 Recurrences resolve runtimes

2.1 Recurrences resolve runtimes (Group)

A recurrence relation is a function de�nition that expresses the value of the function for an argument n in
terms of its values for arguments smaller than n. Here is a well known example of the recurrence relation
for Fibonacci numbers:

F (n) =


F (n− 1) + F (n− 2) if n ≥ 2

1 if n = 1

0 if n = 0

Knowing that F (0) = 0 and F (1) = 1, we can then compute

� F (2) = F (1) + F (0) = 1 + 0 = 1

� F (3) = F (2) + F (1) = 1 + 1 = 2

� F (4) = F (3) + F (2) = 2 + 1 = 3

� F (5) = F (4) + F (3) = 3 + 2 = 5

etc.
When we are given a recursive algorithm, one (and, frequently, the only) way to determine its worst case

running time is by writing a recurrence relation for it. In this week's reading quiz, you learn how to solve
the recurrence relations that arise from a speci�c class of algorithms called divide and conquer algorithms.
This tutorial quiz gives you practice obtaining these recurrence relations. Take mergesort as an example,
with annotations about its runtime on the right:

define mergesort(A, left, right):

if left < right: // O(1) time, divides into two cases

mid = floor ((left + right)/2) // O(1) time

mergesort(A, left, mid) // first recursive call

mergesort(A, mid+1, right) // second recursive call

merge(A, left, mid, right) // linear time call to helper

Suppose that the sublist A[left . . . right] of A that we are sorting contains n elements (that is, right −
left +1 = n). The if guides us to build two cases for the recurrence. In the case when n = 1, nothing
happens and so the running time is constant. Otherwise, the function performs two recursive calls and a
call to merge. The time taken by each recursive call is described by the recurrence relation itself. The �rst
recursive call is on dn/2e elements, and the second on bn/2c elements for T (dn/2e) and T (bn/2c) time.
Finally we know merge runs in Θ(n) time. We thus get the recurrence

T (n) =

{
T (dn/2e) + T (bn/2c) + Θ(n) if n ≥ 2

Θ(1) if n ≤ 1

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Write recurrence relation describing the worst case running time of the following functions:

1. define hanoi(n, from, to, using):

if n > 0:

hanoi(n-1, from, using, to)

print ("Move disc from peg " + from + " to peg " + to)

hanoi(n-1, using, to, from)

2. Assume that the call ElmerJ(A, first, n, x) runs in Θ(n log n) time.

define BugsB(A, first, n):

if n < 3:

return A[first] - 1

x = BinarySearch(A, first, n, BugsB(A, first + floor(n/3), floor(n/3)))

ElmerJ(A, first, n, x)

return BugsB(A, first, floor(n/6)) * BugsB(A, first + floor(n/2), floor(n/4))

3. In the following example, assume that A is a matrix (a 2-dimensional array), that Get(A, i, j, k,

l) returns the square submatrix of A containing rows i through j and columns k through l, that
Put(C, i, j, k, l, X) stores X into the part of C containing containing rows i through j and
columns k through l. Both operations run in time proportional to the number of elements in the
submatrix. You may also assume that Add(X,Y) returns the sum of matrices X and Y, and that
Sub(X,Y) returns the di�erence of matrices X and Y. Add and Sub run in time proportional to the
number of elements in the matrices X and Y.

// Assumption: n is a power of 2.

define strassen(A, B, n):

C = new matrix(n, n)

if n = 1:

C[0, 0] = A[0, 0] * B[0, 0]

else:

A11 = Get(A, 0, n/2-1, 0, n/2-1); A12 = Get(A, 0, n/2-1, n/2, n-1)

A21 = Get(A, n/2, n-1, 0, n/2-1); A22 = Get(A, n/2, n-1, n/2, n-1)

B11 = Get(B, 0, n/2-1, 0, n/2-1); B12 = Get(B, 0, n/2-1, n/2, n-1)

B21 = Get(B, n/2, n-1, 0, n/2-1); B22 = Get(B, n/2, n-1, n/2, n-1)

P1 = strassen(Add(A11, A22), Add(B11, B22), n/2)

P2 = strassen(Add(A21, A22), B11, n/2)

P3 = strassen(A11, Sub(B12, B22), n/2)

P4 = strassen(A22, Sub(B21, B11), n/2)

P5 = strassen(Add(A11, A12), B22, n/2)

P6 = strassen(Sub(A21, A11), Add(B11, B12), n/2)

P7 = strassen(Sub(A12, A22), Add(B21, B22), n/2)

Put(C, 0, n/2-1, 0, n/2-1, Add(Add(P1, P7), Sub(P4, P5)))

Put(C, 0, n/2-1, n/2, n-1, Add(P3, P5))

Put(C, n/2, n-1, 0, n/2-1, Add(P2, P4))

Put(C, n/2, n-1, n/2, n-1, Add(Add(P1, P6), Sub(P3, P2)))

endif

return C

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2.2 Recurrences resolve runtimes (Individual 1)

Fill in the blanks in the recurrence relations describing the worst case running time of each of the following
functions. You may ignore �oors and ceiling when you write the terms of the recurrence relations.

1. Assume that the call merge(A, left, mid, right) runs in Θ(right− left) time.

define skewedsort(A, left, right):

if left + 1 < right:

mid = floor ((2*left + right)/3)

skewedsort(A, left, mid)

skewedsort(A, mid+1, right)

merge(A, left, mid, right)

else if left < right:

if A[left] > A[right]:

swap(A[left], A[right])

T (n) =



T () + T () + if n ≥

if n ≤

2. This one is a bit tricky, so be careful.

define pointless(A, n)

// A is an array with n elements

if n > 1:

return pointless(A, n-1) * pointless(A, n-2)

else:

return A[n-1]

T (n) =



+ Θ(1) if n

if n

Don't miss the question on the next page!

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Assume that the call ALittleBitOfThis(A, size) runs in Θ(1) time, and the call ALittleBitOfThat(A,
size, i) (correction: size should have been n) runs in Θ(log n) time,

define recurrence(A, size, n)

// A is an array with size elements, and 0 <= n < size.

if n = 0:

ALittleBitOfThis(A, size)

else:

i = n

while i > 0:

i = floor(i/2)

ALittleBitOfThat(A, n, i)

recurrence(A, size, n-1)

ALittleBitOfThat(A, n, i)

T (n) =



+ Θ() if n

if n

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2.3 Recurrences resolve runtimes (Individual 2)

Fill in the blanks in the recurrence relations describing the worst case running time of each of the following
functions. You may ignore �oors and ceiling when you write the terms of the recurrence relations.

1. Assume that a call to LinearTimeAlgorithm(A, first, n1, second, n2) runs in O(n1 +n2) time.

define bizarre(A, first, n)

if (n > 1):

bizarre(A, first, floor(n/2))

bizarre(A, first + floor(n/2), floor(n/3))

bizarre(A, first + n - floor(n/4), floor(n/4))

LinearTimeAlgorithm(A, first, floor(n/2),

first + floor(n/2), n - floor(n/2) - floor(n/4))

T (n) =



T () + T () + T () + if n >

if n ≤

2. This one is a bit tricky, so be careful.

define pointless(A, n, item)

// A is an array with n elements; item is an array element

if n > 0

x = binarysearch(A, n, item)

pos = pointless(A, n-1, pointless(A, n-2, x))

else:

return 1

T (n) =



+ Θ(log n) if n

if n

Don't miss the question on the next page!

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Assume that the call ALittleBitOfThis(A, size) runs in Θ(1) time, and the call ALittleBitOfThat(A,
n, i) runs in Θ(

√
n) time,

define recurrence(A, size, n)

// A is an array with size elements, and 0 <= n < size.

if n <= 1:

ALittleBitOfThis(A, size)

else:

for i = n-1 downto 0:

ALittleBitOfThat(A, size, i)

recurrence(A, size, n-2)

ALittleBitOfThat(A, size, i)

T (n) =



+ Θ() if n

if n

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Playing the Blame Game

A distributed computing system composed of n nodes is responsible for ensuring its own integrity against
attempts to subvert the network. To accomplish this, nodes in the system can assess each others' integrity,
which they always do in pairs. A node in such a pair with its integrity intact will correctly assess the node
it is paired with to report either "intact" or "subverted". However, a node that has been subverted may
freely report "intact" or "subverted" regardless of the other node's status.

The goal is for an outside authority to determine which nodes are intact and which are subverted. If
n/2 or more nodes have been subverted, then the authority cannot necessarily determine which nodes are
intact using any strategy based on this kind of pairing. However, if more than n/2 nodes are intact, it is
possible to con�dently determine which are which.

Throughout this problem, we assume that more than n/2 of the nodes are intact. Further, we let one
"round" of pairings be any number of pairings overall as long as each node participates in at most one
pairing. (I.e., a round is a matching that may not be perfect.)

1. Imagine that nodes a and b have been paired. No matter what report we receive, both nodes could
have been subverted because subverted nodes may respond arbitrarily to a pairing.

Fill in the circle next to all other possible situations corresponding to a given report from the nodes:

a reports b is b reports a is Could be:

intact intact both intact a intact, b subverted a subverted, b intact

intact subverted both intact a intact, b subverted a subverted, b intact

subverted intact both intact a intact, b subverted a subverted, b intact

subverted subverted both intact a intact, b subverted a subverted, b intact

(Reminder: both subverted is always a possibility.)

2. Imagine that we've found one node that is de�nitely intact and that, having done so, we now only
make a pairing when at least one node in the pair is known to be intact. Give good asymptotic lower-
and upper-bounds on the number of rounds required to determine for every other node whether it is
intact or subverted.

Asymptotic lower-bound on rounds:

Asymptotic upper-bound on rounds:

(We can now have as a goal �nding one intact node.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Now, imagine that we are searching for one de�nitely-intact node among a set of nodes of whichmore

than half are intact. We �nd a way to discard from the search k > 0 nodes with the guarantee that
at least half of the discarded nodes are subverted (i.e., at least as many discards are subverted as
intact).

Give exact lower- and upper-bounds on k in terms of n such that more than half of the new search
space is guaranteed to be intact.

Exact lower-bound on k:

Exact upper-bound on k:

4. Again imagine that we are searching for one de�nitely-intact node among a set of nodes of which
more than half are intact. This time, we �nd a way to discard from the search k > 0 nodes that may
be any mixture of intact and subverted nodes such that there are k nodes still in the search space

in exactly the same mixture of intact and subverted nodes. (There are no other nodes discarded, but
there may be others kept in the search space.)

Give exact lower- and upper-bounds on k in terms of n such that more than half of the new search
space is guaranteed to be intact. (Note that we do care about b�oorsc and dceilingse in your answer,
though substantial partial credit is available without them.) Consider only the case where n ≡ 1
mod 4, i.e., n− 1 is exactly divisible by 4.

Exact lower-bound on k:

Exact upper-bound on k:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 Mixed Nets

You're working on the routing for an anonymization service called a "mixnet" in which a network of
computers pass messages through a sequence of hando�s from one source computer to another target
computer.

To represent this, you have a weakly-connected, directed acyclic graph (DAG) G = (V,E) composed of
designated source and target vertices s, t ∈ V and a set of p > 0 simple paths (along which p messages pass)
each of which starts at s, ends at t, and includes at least one vertex in between s and t. The paths are also
vertex disjoint besides s and t (i.e., no two paths share any other vertex). There are no other vertices or
edges in the graph. For example, here are two di�erent graphs both over the same set of vertices and both
with p = 2:

Graph 1 Graph 2

1. Let n = |V |. Give exact lower- and upper-bounds on p in terms of n.

Exact bounds: ≤ p ≤

2. Let m = |E|. Give exact lower- and upper-bounds on p in terms of m.

Exact bounds: ≤ p ≤

3. In a valid instance of this problem, the p paths are vertex disjoint besides the shared start at s and
end at t. Are they therefore also edge-disjoint (i.e., no two paths include the same edge)?

ALWAYS

SOMETIMES

NEVER

4. In a valid instance of this problem, is there any path from s to t?

ALWAYS

SOMETIMES

NEVER

On the next page, you'll work on this variation to the problem:

Your mixnet actually involves a single set of computers (with a designated start and target computer)
and two entirely separate sets of paths among those computers, as with the two sample graphs on the
previous page. At some point as each message passes along its path among the �rst set of paths, it
switches to using one of the second set of paths instead (never switching back).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Speci�cally, you have an overall graph made up of two subgraphs like those speci�ed in the previous
part, where one subgraph's vertices is an exact copy of the other's, i.e., G1 = (V1, E1) and G2 =
(V2, E2), where a vertex v1 ∈ V1 if and only if there is a vertex v2 ∈ V2. (s1 and t1 are the start and
target vertices in G1 and their corresponding vertices s2 and t2 are the start and target in G2.) Each
subgraph is based on its own set of p paths, but p is the same for both. There is also a directed edge
(v1, v2) for each vertex v1 ∈ V1 except s1 and t1 leading from G1 to G2. (There is no edge from s1
to s2 or t1 to t2.)

So, for the example on the previous page, the overall graph would include both Graph 1 (with
each node subscripted like a1) and Graph 2 (with each node subscripted like a2) plus 4 more edges:
(a1, a2), (b1, b2), (c1, c2), (d1, d2).

Your goal is to �nd p vertex-disjoint paths in the overall graph that start at s1 in G1 and end at t2
in G2. Thus, no two paths visit the exact same vertex (besides s1 and t2). Additionally, you want
to ensure that no two paths even visit the same vertex in di�erent subgraphs (i.e., no path contains
v1 if any other path contains v2).

5. In a valid instance of this problem, is there any path from s1 to t2?

ALWAYS

SOMETIMES

NEVER

6. In a valid instance of this problem, is there any path from t1 to t2?

ALWAYS

SOMETIMES

NEVER

7. Fill in the box next to all the edges used in a solution to the problem based on the examples on the
previous page:

(a1, a2)

(b1, b2)

(c1, c2)

(d1, d2)

8. Fill in the box next to all the edges in a solution to the problem based on the examples on the
previous page that has the right number of well-formed paths but violates one of the other constraints
on solutions:

(a1, a2)

(b1, b2)

(c1, c2)

(d1, d2)

9. Given a valid instance of this problem, does it necessarily have a valid solution (i.e., a solution with
p vertex-disjoint paths where no two paths even visit the same vertex in di�erent subgraphs)?

ALWAYS

SOMETIMES

NEVER

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5 Cover Charge

In the "minimum edge cover" problem, the input is a simple, undirected, connected graph G = (V,E) with
|V | ≥ 2, and the output is the smallest possible set E′ such that E′ ⊆ E and for all vertices v ∈ V , there
is an edge {v, u} (which is the same as {u, v}) in E′. That is, every vertex in the graph is the endpoint of
some edge in E′.

Consider the following greedy algorithm for this problem:

Sort the vertices in increasing order by degree

Mark all vertices as uncovered

Let the cover E' be empty.

While there are vertices remaining, pick the next one v:

If v is uncovered:

If there is any neighbour u of v that is uncovered:

Find the uncovered neighbour u of v with lowest degree

Add {u, v} to E' and mark u and v as covered

Else:

Pick an arbitrary edge {u, v}, add it to E', and mark v as covered

1. Does this greedy algorithm produce an edge cover (whether or not it is minimal)?

ALWAYS

SOMETIMES

NEVER

2. Does this greedy algorithm produce a minimal edge cover?

ALWAYS

SOMETIMES

NEVER

3. Assuming that the graph is represented as an adjacency list and that we can determine the degree of
a vertex in constant time, give a good big-O bound on the runtime of this greedy algorithm in terms
of n = |V | and m = |E|.

Big-O Bound:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

A maximum matching in a graph G = (V,E) is the largest set E′′ such that E′′ ⊆ E and there are
no three vertices v1, v2, v3 ∈ V such that {v1, v2} and {v1, v3} are in E′′. That is: E′′ "marries o�"
as many vertices as possible without having any one vertex "married" to two or more vertices.

In this part, assume you have a graph G = (V,E) and a maximum matching for the graph E′′.

4. Under what conditions is E′′ itself a minimal edge cover? Fill in the circle next to the best answer.

E′′ is a perfect matching

E′′ is a stable matching

{|E′′| = |E|
2 }

none of these guarantees E′′ is a minimal edge cover

5. Let E′′ be a maximum matching in G = (V,E), v ∈ V be a vertex that is not covered by E′′, and
{u, v} ∈ E (i.e., there's an edge from u to v). Is u covered by E′′?

ALWAYS

SOMETIMES

NEVER

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Ol' McDonald is safer, he hi he hi ho
	Ol' McDonald is safer, he hi he hi ho (Group)
	Ol' McDonald is safer, he hi he hi ho (Individual)

	Recurrences resolve runtimes
	Recurrences resolve runtimes (Group)
	Recurrences resolve runtimes (Individual 1)
	Recurrences resolve runtimes (Individual 2)

	Playing the Blame Game
	Mixed Nets
	Cover Charge

