
CPSC 320 Sample Solution, Clustering

February 3, 2018

You're working on software to manage people's photos. Your algorithm receives as input:

� a bunch of uncategorized photos,

� the number of categories to group them into (i.e., how many categories to use),

� and a similarity measure for each pair of photos.

(A 0 similarity indicates two photos are nothing like each other; a 1 indicates two photos are exactly the
same. All other similarities are in between.)

Your algorithm's job is to create a "categorization": the requested number of categories, where a
category is just a (non-empty) set of the photos contained in that category. Every photo belongs to some
category, and no photo belongs to more than one category. (I.e., a categorization is a "partition".)

Note: we assume that to your algorithm the photos are just nodes with no special content. The
similarities encode everything it needs to know about them. So, for example, your algorithm cannot "�nd
the prominence of a person in the photo" because that relies on the photos' contents.

Sketches (drawings) will be incredibly important for understanding this problem!

1 Trivial and Small Instances

1. Write down all the trivial instances of the categorization problem.

SOLUTION: An empty graph (with zero categories, the only legitimate number to ask for) is clearly
trivial.

Let's let n be the number of photos and c be the number of categories requested. Then, any instance
with c = 1 besides the empty graph is also trivial because every photo must go in exactly one category,
and there is only one category!

Conversely, what if there are just enough photos to make the categories non-empty: c = n. In that
case, each photo goes in its own category, and the instance is still trivial.

For the rest of the problem, let's assume the empty graph and zero categories are disallowed, since
that instance doesn't �t well with the other trivial instances.

You might also �nd instances with all similarities equal or other interesting cases to be trivial. We'll
leave our list at what we've given so far.
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2. Write down another small instance of the categorization problem of di�erent sizes. (Try to �nd the
smallest non-trivial instance you can.)

SOLUTION: The smallest instance where 1 < c < n is when n = 3 and c = 2: three photos and
two categories. Here's one such, where we describe the graph as a list of edge tuples (v1, v2, w) with
two vertices and the similarity weight between them: ({(1, 2, 0.5), (1, 3, 0.8), (2, 3, 0.2)}, 2). Drawn,
this looks like:

It seems clear that any reasonable metric should group 1 and 3 here and leave 2 alone.

3. Draw a reasonable graph for this set of numbered pictures. (You need to choose similarities between
each pair of photos; just quickly choose some that you like! Note that while you're doing this step,
your algorithm does not do it! It receives the similarities as input.)

SOLUTION: There are many reasonable solutions. Here's one. (We simply chose plausible similar-
ities.)

Along with c = 2, this is an instance of the problem.

It's hard to eyeball a solution to this with no metric to guide us, but it does seem likely that images
1 and 3 should be together given their strong similarity. Once we decide that, we might put images
2 and 4 together as well.
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4. The graph you've drawn is not an instance of this problem yet because something is missing. Read
the speci�cation at the start of this worksheet carefully, �gure out what's missing, and add
that missing element. Use the value 2.

SOLUTION: See above.
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5. Give solutions to your trivial/small instances by hand if you haven't already done so. In your small
instances, brie�y justify why your solution is the best one.

6. Hold this space for another instance, in case we need more.
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2 Represent the Problem

1. We represent an unweighted, undirected graph as G = (V,E), where V is a set of nodes, E is a set of
edges, and each edge is a tuple (u, v) that we consider to be unordered, where u, v ∈ V .

That's not quite right for our problem. Modify the representation to describe the input graph in this
problem. Also describe the additional parameter (the desired number of categories).

SOLUTION: Again, we've wrestled with this above. We might say the input is (G, c), where
G = (V,E), V is a set of photos of size n, E is a set of weighted edges of the form (vi, vj , s), where
vi, vj ∈ V and 0 ≤ s ≤ 1. c is just the desired number of categories (a natural number where
1 ≤ c ≤ |V | or c = 0 if G is empty).

Note that we also want the graph to be complete�to contain every possible edge (except self-loops).

2. Go back up and rewrite one trivial and one small instance using these names.

SOLUTION: See above.

3. Our sketched representation of weighted graphs remains great! Sketch all your instances if you haven't
already.

4. Our input graph has some constraints. We'll skip expressing "no self-loops" and "no duplicate edges",
since we've done that before. Similarities must also be between 0 and 1, and every pair of photos
has a similarity. Further, only certain numbers of categories make sense. Express these constraints.

SOLUTION: We speci�ed 0 ≤ s ≤ 1 above. We can also say that every pair of nodes has an edge:
there is an edge (vi, vj , s(i,j)) for all vi, vj ∈ V where vi 6= vj . Finally, we said above that barring the
empty graph and zero categories, we require 1 ≤ c ≤ n. (A category may not be empty, and the most
it can contain is all the nodes!)
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3 Represent the Solution

1. What are the quantities that matter in the solution to the problem? Give them short, usable names.

SOLUTION: The solution will be a set of categories {C1, C2, . . . , Cc}, where a category Ci is a set
of nodes from V .

2. Describe using these quantities what makes a solution valid and good.

SOLUTION: A useful line at which to draw valid is that a categorization must be a partition.
That is, every photo must belong to one and only one category. Depending on your de�nition of
"partition", you may need to further constrain that all categories Ci be non-empty.

It's much harder to say what a good solution is. Clearly we want to reward having nodes with high
similarity in the same category and penalize having nodes with low similarity in the same category. If
we divide edges into intra-category (between nodes in the same category) and inter-category (between
nodes in di�erent categories), then we might choose a metric like "sum of the intra-category similarities
minus sum of the inter-category similarities". However, this will push us toward large categories.
(Since the number of intra-category edges scales as O(|C|2), there are more intra-category edges in
a categorization with one big category and many small ones than with all even-sized categories (and
the same total number of categories).)

We could instead try adding the average similarity of each category together. We have to decide
then what to do with categories of a single node, since their average is unde�ned. Rate them zero?

(Note that there's no "right" choice. We just have to decide what does a good job modeling what we
care about and how e�cient a solution we get. There's something fundamental about the fact that
we will soon pick a metric that's totally reasonable. . . and which we really chose because it is "good
enough" and admits a highly e�cient solution. How much of our lives are now ruled by metrics that
are easy to compute rather than "best"?)

3. Does your metric for the "goodness" of a categorization give the same result for these two categoriza-
tions of a four-node instance into two categories: {1, 3}, {2, 4} and {4, 2}, {1, 3}? Should it? Why or
why not?

SOLUTION: All metrics described above rate these two categorizations the same, which is good.
Since we have only a number of categories to create (and not a description of what the categories
are), there's no way for us to assign value to exactly which category a node goes into, only to where
the node sits with respect to other nodes. (Similarly, we don't care where in a category a node goes.)

(Adjust your categorization as needed!)

4. Go back up to your trivial and small instances and write out one or more solutions to each using
these names.

SOLUTION: Left to the reader, since it's not much di�erent than our solutions "in English".

5. Go back up to your drawn representations of instances and draw at least one solution.

SOLUTION: We'd just circle nodes that go together, but we'll leave that to the reader!
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6. From here on, we'll all use the same "goodness" measure.

First, we de�ne the similarity between two categories C1 and C2 to be the maximum similarity between
any pair of photos p1, p2 such that p1 ∈ C1 and p2 ∈ C2.

Then, the "goodness" of a categorization is the maximum similarity between any two of its categories,
and the best "goodness" is 0. (Note that we are indeed "minimizing a maximum". The "goodness"�
or maybe it would be better to call this the "badness"�of a single solution is the maximum of its
categories' similarities. We don't want categories to be similar. So, the best solution is the one
among all valid solutions that has the lowest value for this measure.)

Go back to the questions on the previous page and re-answer them with this "goodness" measure.

SOLUTION: This goodness measure is also insensitive to reordering of the categories, which is good.
Furthermore, it corresponds to our solutions above. (So, the 4-node, 2-cluster problem's solution has
a goodness of 0.6, de�ned by the edge between 1 and 4. The 3-node, 2-cluster problem's solution has
a goodnes of 0.5 (between nodes 1 and 2).

4 Similar Problems

You're starting to learn more problems and algorithms. Spend 3 minutes trying to brainstorm at least one
similar problem. (Any problem is �ne, not just ones from a textbook or Wikipedia page; your problem
could come from our quizzes, lectures, or assignments.)

SOLUTION: There are certainly similarities here to shortest path, minimum spanning tree, stable
marriage, and maximal matching. As we'll see, perhaps the most promising similarity is to MST!
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5 Brute Force?

1. The set of all valid solutions is the set of partitions of V into c subsets (where c is the requested
number of categories). That turns out to be tricky to produce directly (challenge problem!).

Instead, write pseudocode to produce all the "labellings" of the nodes where each node is given a label
from {1, 2, . . . , c}. (This will produce invalid solutions where some categories go unused, which we'll
have to �lter out. It will also produce duplicates where the same set of categories has simply been
renamed. As always, give a name to your algorithm and its parameters, especially if your algorithm
is recursive.)

SOLUTION: We said a valid solution is one that forms a partition with c parts. It's not obvious
how to generate these via brute-force, but generating all "labellings" with c labels is a bit easier.
Imagine our categories were named, so that, e.g., category A with nodes 1 and 2 and B with 3 and 4
is di�erent from A with 3 and 4 and B with 1 and 2. Then, we are assigning one of c category labels
to each of n elements.

It turns out to be surprisingly easy to form all the labellings. For each node, we have c choices of
labels, and that choice is independent of all the other choices. We can use an algorithm like:

all_labellings(n, c):

if n = 0:

yield {} // yield the single solution that is the empty labelling

else:

for soln in all_labellings(n-1, c):

for i in c:

yield {(n, i)} + soln // add n labelled with i to soln

How many labellings does this produce? n independent choices, with c options each. That's
c× c× . . .× c︸ ︷︷ ︸

n times

= cn labellings. If we model the code above with a function representing the number

of solutions it produces Ta(n, c), we get Ta(n, c) = 1 if n = 0 and otherwise Ta(n, c) = Ta(n− 1, c) ∗ c.
This produces the same product of c multiplied together n times.

We can then lump nodes with the same labels into a category and eliminate results that have empty
categories. That will produce categorizations many times (by a factor of c!, in fact).

We can cleverly avoid both problems if we take the labels as parameters as two sets�non-empty
categories and empty ones:

// NOTE: the initial call would be all_categorizations(n, {}, {1, ..., c})

// PREREQ: 0 <= |unused_labels| <= n

// PREREQ: unused_labels and used_labels are disjoint

all_categorizations(n, used_labels, unused_labels):

if n = 0:

yield {}

// ensure every label gets used

else if n = size(unused_labels):

// assign one unusued label to each number 1, ..., n

// what permutation we choose is irrelevant

yield {(1, unused_labels[1]), (2, unused_labels[2]),

..., (n, unused_labels[n])}

else:

// n could go in any of the already-started categories..
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for i in used_labels:

for soln in all_categorizations(n-1, used_labels, unused_labels):

yield {(n, i)} + soln

// or it can start a new category of its own, in which case

// the new category's specific label is arbitrary

if unused_labels is non-empty:

let u be an arbitrary label from unused_labels

for soln in all_categorizations(n-1, used_labels + {u}, unused_labels - {u}):

yield {(n, u)} + soln

That's rather tricky and, as discussed below, still takes exponential time or worse! So, maybe the
�rst one is the better brute force approach just for being easier to think of/implement.
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2. Choose an appropriate variable (or variables!) to represent the "size" of an instance.

SOLUTION: c and n seem like the key variables.

3. Exactly or asymptotically, how many candidate solutions (counting invalid ones and duplicates) does
this brute force approach produce?

SOLUTION: For the brute force approach, this is just cn.

For the actual number of valid solutions, this is quite a tricky question!

But the bottom line is that there are a lot of solutions. After all, with c = 2, the labellings algorithm
above produces all subsets of a set of size n, of which there are 2n. The categorization solution
produces one less (cutting the case with an empty category) than half (cutting repeats where the two
categories are swapped) that many: 2n

2 − 1 ∈ Θ(2n). This is already exponential, and as long as c is
smallish compared to n, this only gets worse as c grows.

4. In this problem, you'll likely keep track of the best candidate solution you've found so far as you work
through brute force. What will characterize how good a possible solution is?

SOLUTION: Based on our goodness metric, it's the highest similarity of any inter-category edge.

5. Given a possible solution, how can you determine how good it is? Asymptotically, how long will this
take?

SOLUTION: A brute force approach would take O(n2) (which, for these complete graphs, is O(m))
time. For each pair of nodes, check if they're in the same category (which if we have labels attached
to the nodes takes constant time). If they're not, check if their similarity exceeds the highest we've
found so far, updating if necessary.

6. Will this brute force approach be su�cient for this problem for the domain we're interested in?

SOLUTION: No way! There are at least an exponential number of solutions to any interesting
problem.
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6 Promising Approach

There is a much better approach.

1. Find the edge in each of your instances with the highest similarity. Should the two photos incident
on that edge go in the same category? Prove your result.

SOLUTION: Yes the two photos incident on the edge with highest similarity belong in the same
category. Why?

Let's revisit our metric. It ignores intra-category edges: any edge that's entirely contained within a
single category (i.e., both nodes incident on the edge are in the same category). Its goal is to minimize
the maximum inter -category edge.

If we put the two photos incident on the highest similarity edge in di�erent categories, that edge
becomes an inter-category edge, and no other edge can possibly "beat it". That means a solution in
which those two photos are in di�erent categories is (tied for) the worst possible solution.

Thus, those two photos clearly belong in the same category. What we're really saying is "start with
every node being its own category, then you're best o� merging the two categories connected by the
highest-similarity edge".

Once we decide that, we can actually simplify our problem and reach a sketch of a solution algorithm.
Here's two ways to think about the simpli�cation.

Version 1: That reasoning actually applies not just to the highest-similarity edge. It applies to all
the k highest-similarity edges until we've "lumped together" enough nodes that we're down to our
desired number of categories. That is, no categorization can possibly do better than to "hide" the
next highest-similarity edge inside a category by putting the edge's two nodes in the same category
until the next edge it attempts to hide would reduce the number of categories below that requested
by the instance. (Notice that not every edge actually merges two categories; some edges may already
be in the same category.)

Version 2: Once we've decided to lump together the two nodes incident on the highest-similarity edge,
we can actually reduce this instance to a smaller instance of the photo categorization problem using
an edge contraction. Imagine we remove nodes u and v by contracting their edge (u, v, s) (where s is
whatever similarity that edge had). We make a new graph with n− 1 nodes that lacks the two nodes
we just lumped together. Instead, we introduce a combined node nu,v. We remove the edge (u, v)
from the graph. Each of u and v also had an edge to every other node, but the new graph needs just
one edge from the combined node to each other node. So, for every two edges (u, n, su) and (v, n, sv),
we make a single new edge (nu,v, n,max(su, sv)). We keep the maximum because it's the one that
will "cause trouble" if it ends up being an inter-category edge. (Note that after this point, either
both edges will be intra-category or both will be inter-category. We cannot put u and v in the same
category and then put n in the u's category but not v's!) Once we get a catogerization that solves
the sub-problem, we turn it into a categorization that solves the original problem by removing nu,v

from whatever category it ended up in and replacing it there with u and v.

The cool thing about that reduction is that we can then make an inductive argument that repeatedly
picking the highest-similarity edge and merging the two incident nodes into a single category is
guaranteed to produce the best categorization!

2. Based on this insight, propose an e�cient algorithm to create a categorization.

SOLUTION: We have the sketch of an algorithm already. We just need to �esh out how we (1) �nd
the highest-similarity edge, (2) merge the two nodes incident on that edge into a single category, and
(3) produce the categories at the end.

Here's one algorithm:
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// Assume: P is a list of photos, sim is a function that takes two

// photos and produces their similarity (between 0 and 1,

// where 0 is minimally similar and 1 maximally), and c

// is the desired number of categories such that 1 <= c <= |P|.

// Postcondition: produces a set where each element is a category

// (i.e., is itself a set of photos categorized together)

categorize(P, sim, c):

// First, build a priority queue of edges ordered by decreasing similarity: O(m)

let H be a new empty array of (key, value) tuples (suitable as the array for a heap)

for i from 1 to |P|:

for j from i+1 to |P|:

append (sim(P[i], P[j]), (i, j)) onto H

let h be the max-heap resulting from calling build_max_heap on H

// Place the photos into categories, w/appropriate data structures: O(m lg m).

// Critically, each deleteMax takes lg(m) time, and there are O((n-c)^2) of them.

// We'll treat this as O(m \lg m) = O(n^2 \lg n). (Recall that the graph is complete.)

// Technically, for c nearly as large as n, this can run faster, but since

// that is, practically speaking, an unimportant case, we use the simpler bound.

let cats be a new union-find data structure containing 1, ..., |P|

let num_cats = |P|

while num_cats > c:

// Find the highest-similarity edge remaining

let (s, i, j) = findMax(h)

deleteMax(h) // lg(m) time

// Merge photos i and j, noting whether

// the number of categoris has gone down.

if find(cats, i) != find(cats, j):

num_cats--

union(cats, i, j)

// Extract the categorization, w/appropriate data structures: O(n)

let A be an array of (initially empty) sets of photos

for i in range 1 to |P|:

insert P[i] into A[find(i)]

let S be an empty set (of sets of photos)

for i in range 1 to |P|:

if A[i] is non-empty:

insert A[i] into S

return S

Looking at the (rather scanty!) annotations I included above, we get a total runtime of O(m+n2 lg n+
n) = O(n2 lg n). In other words, we can build our categorization in time that's only slightly worse (a
log-factor worse) than the amount of time to simply look at every edge. That's pretty great!
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7 Challenge Your Approach

1. Carefully run your algorithm on your instances above. (Don't skip steps or make assumptions;
you're debugging!) Analyse its correctness and performance on these instances:

SOLUTION: Let's try it on this graph with c = 1. (This is silly, since we know what the answer
should be with only one category, but it gives a better sense for how the algorithm works!)

First, we create a max-heap that would produce the following edges in order if we call �nd/delete
over and over: (1, 3), (4, 5), (2, 4), (2, 5), (2, 3), (1, 5), . . .. (Note: (2, 4) and (2, 5) are tied. It turns out
to be �ne according to our metric to break these ties arbitrarily.)

Next, we iterate through this list until we get down to one category. WARNING: this part will make
no sense if you haven't read section 4.6. But you're reading the textbook or equivalent resources,
right? Learn about the union-�nd data structure!

Let's look at the edge at the heart of each iteration:

(1, 3) Now 1 and 3 are in the same set, say 1. (If c were 4, we'd stop here.)

(4, 5) Now 4 and 5 are in the same set, say 4. (If c were 3, we'd stop here.)

(2, 4) Now 2 and 4 are in the same set. Since 4's set is larger, 2 goes into 4's set, which is named 4.
(If c were 2, we'd stop here.)

(2, 5) 2 and 5 are already in the same set; when we call find on them, we get back 4 for both. So,
the sets don't change (nor does num_cats).

(2, 3) Now 2 and 3 are in the same set. Since the set containing 2 is larger, we renumber 3's set to
use 2's set's name (which is 4). At this point, everything is in set 4, and we stop (since num_cats
= c=).

2. Design an instance that speci�cally challenges the correctness (or performance) of your algorithm:

SOLUTION:We've sketched a proof that this is correct. So, we won't try to challenge its correctness!
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