
CPSC 320 Notes: Programming competitions, CPSC 320 and

Divide-and-Conquer

February 27, 2018

You have been put in charge of sending invitation emails to students whom the department of Computer
Science and the department of Electrical and Computer Engineering would like to join one of the teams
that UBC sends to the ACM international programming competition. You decide to contact the students
who obtained the top k grades in CPSC 320 over the last year.

1 Algorithmic Largest k grades

1. Assuming you're given n students along with their CPSC 320 grades, and you want to get the students
with the top k grades. Specify and solve at least two small examples.

2. There are several ways of solving the problem of �nding the students with the highest k grades.
Design and describe short algorithms with the following properties:

a. An algorithm based on the max function.

b. An algorithm based on sorting.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


c. An algorithm that uses a max-heap.

3. Now give good asymptotic bounds on the runtime of each algorithm

a. An algorithm based on the max function.

b. An algorithm based on sorting.

c. An algorithm that uses a max-heap.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4. Now let's switch problems to a somewhat similar one. Imagine you simply want to �nd the k-th
highest grade. 1

a. Adapt your small instances above into instances of this problem�including choosing values of
k�and solve them. (Note: nothing on this page is a reduction between this and the previous page's
problems. We're just taking advantage of the fact that these problems are similar to avoid thinking
too hard!)

b. Adapt the algorithm based on the max function to solve this new problem and give a good
asymptotic bound on its runtime.

c. Adapt the algorithm based on sorting to solve this new problem and give a good asymptotic bound
on its runtime.

d. Adapt the algorithm that uses a max-heap to solve this new problem and give a good asymptotic
bound on its runtime.

1A common element to search for would be the median. If you can solve the problem of �nding the k-th largest, then you

can solve the median problem as well by setting k = dn
2
e.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2 Analysing QuickSort

Remember the QuickSort algorithm:

// Note: for simplicity, we assume all elements of A are unique

QuickSort(list A):

If length of A is greater than 1:

Select a pivot element p from A // Let's assume we use A[1] as the pivot

Let Lesser = all elements from A less than p

Let Greater = all elements from A greater than p

Let LesserSorted = QuickSort(Lesser)

Let GreaterSorted = QuickSort(Greater)

Return the concatenation of LesserSorted, [p], and GreaterSorted

Else:

Return A

1. Assuming that QuickSort gets "lucky" and happens to always selects the dn4 e-th largest element as
its pivot, give a recurrence relation for the runtime of QuickSort.

2. Draw a recursion tree for QuickSort labeled on each node by the number of elements in the array at
that node's call (n) and the amount of time taken by that node (but not its children); also label the
total time for each "level" of calls. (For simplicity, ignore ceilings, �oors, and the e�ect of the removal
of the pivot element on the list sizes in recursive calls.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3. Find the following two quantities. Hint: if you describe the problem size at level i as a function of i
(like i2+ 1

2 i), then you can set that equal to the problem size you expect at the leaves and solve for i.

(a) The number of levels in the tree down to the shallowest leaf (base case):

(b) The number of levels in the tree down to the deepest leaf:

4. Use these to asymptotically upper- and lower-bound the solution to your recurrence. (Note: if, on
average, QuickSort takes two pivot selections to �nd a pivot at least this good, then your upper-bound
also upper-bounds QuickSort's average-case performance.)

5. Draw the speci�c recursion tree generated by QuickSort([10, 3, 5, 18, 1000, 2, 100, 11,

14]). Assume QuickSort: (1) selects the �rst element as pivot and (2) maintains elements' rela-
tive order when producing Lesser and Greater.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


3 Largest k grades Winner (for Median)

Let's return to the k-th largest problem. We'll focus our attention on the median, but ensure we can
generalize to �nding the k-th largest element for any 1 ≤ k ≤ n. The median in the call to QuickSort([10,
3, 5, 18, 1000, 2, 100, 11, 14]) is the 5th largest element, 11.

1. Mark the nodes in your speci�c recursion tree above in which the median (11) appears. (The �rst of
these is the root.)

2. Look at the second recursive call you marked�the one below the root. 11 is not the median of the
array in that recursive call!

(a) What is the median of the array in that recursive call?

(b) For what k is the median of that array the k-th largest?

(c) For what k is 11 the k-th largest element of that array?

(d) How does that relate to 11's original k value, and why?

3. Look at the third recursive call you marked. For what k is 11 the k-th largest element of that array?
How does that relate to 11's k value in the �rst recursive call, and why?

4. If you're looking for the 42nd largest element in an array of 100 elements, and Greater has 41 elements,
where is the element you're looking for?

5. How could you determine before making QuickSort's recursive calls whether the k-th largest element
is the pivot or appears in Lesser or Greater?

6. Modify the QuickSort algorithm above to make it a k-th largest element-�nding algorithm. (Really,
go up there and modify it directly with that pen/pencil you're holding. Change the function's name!
Add a parameter! Feel the power!)

7. Give a good asymptotic bound on the average-case runtime of your algorithm by summing the runtime
of only the 3n

4 branch of your abstract recursion tree for QuickSort.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


4 Challenge

Note: assume all elements are unique for the �rst two problems below.

1. Compare the average-case performance of your QuickSelect algorithm above against the performance
of one that picks a random pivot (rather than using the �rst element).

2. Explain how this statement can possibly make sense for the random-pivot version of QuickSelect:
"There is no di�erence between the best- and worst-case performance of this algorithm." Note: we
instead use "expected performance" to describe this scenario.

3. Which one is better and why: good average-case performance or good expected performance?

4. Compare the actual (not asymptotic) number of comparisons made by the standard algorithm for
�nding the largest element of a list and QuickSelect used to do the same, assuming QuickSelect

always "gets lucky" and picks the median of what remains as its pivot.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Algorithmic Largest k grades
	Analysing QuickSort
	Largest k grades Winner (for Median)
	Challenge

