
CPSC 320 2017W2: Assignment 3

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify ev-

eryone in your group if you're making a group submission. (Reminder: groups can include a maximum of

three students; we strongly encourage groups of two.)

Remember that this assignment is based on the collected quizzes and quiz solutions. You will likely

want to refer to those where you need more details on assignment questions.

Submit by the deadline Monday 5 Mar at 10PM. For credit, your group must make a single

submission via one group member's account, marking all other group members and the pages associated

with each problem in that submission using GradeScope's interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to

the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.

Scanned documents will likely work well. High-quality photographs are OK if we agree they're

legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout

(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,

very clearly and prominently indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of

your team. (Please do NOT include your name on the assignment, however.1)

� Include at the start of the document the statement: "All group members have read and followed

the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with

anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope

information) away, and (2) after a suitable break, my group created the assignment I am submitting

without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca IDs, but not

their names. (Be sure to get those IDs when you collaborate!)

1 Ol' McDonald is safer, he hi he hi ho

Here is pseudocode for a correct greedy algorithm that solves the McDonald's safety committee problem:

define produce_safety_committee(array_of_shifts):

Smax = none # where s(none) = f(none) = -∞
previous_Smax = none

list_current = empty list

1If you don't mind private information being stored outside Canada and want an extra double-check on your identity,

include your student number rather than your name.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202017W1/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

all_endpoints = all shift endpoints, sorted in increasing order

for endpoint p in all_endpoints:

let S be the shift to which p belongs

if p is a left endpoint:

set Smax to S if f(S) > f(Smax)

#

Shifts starting before f(previous_Smax) are already covered.

so we don't need to worry about covering them.

#

if p < f(previous_Smax):

mark S as covered

else:

add S to list_current

else if S is not marked as covered:

previous_Smax = Smax

add Smax to the committee

mark all shifts from list_current as covered

list_current = empty list

In this question you will complete a proof of correctness of this algorithm.

1. Let S1, . . . , Sk be the set of shifts returned by our algorithm. Assume without loss of generality that

S1, . . . , Sk is sorted by �nishing times. We will denote the starting and �nishing times of shift Sj by

s(Sj) and f(Sj) respectively. We �rst prove that S1, . . . , Sk is a valid safety committee, by proving

that:

Fact 1 If S is a shift such that s(S) ≤ f(Sj), then S overlaps one of S1, . . . , Sj.

Proof : The proof is by induction on j. For j = 1, observe that FILL IN THIS PART.

Suppose now that every shift whose starting point is ≤ f(Sj) overlaps one of S1, . . . , Sj . Consider a

shift S such that s(S) ≤ f(Sj+1).

� If s(S) ≤ f(Sj) then FILL IN THIS PART.

� Otherwise, FILL IN THIS PART. Thus f(S) ≥ f(T), which means that it overlaps with

Sj+1.

End Proof

2. Let T1, . . . , Tm be the shifts in a smallest safety committee, sorted by increasing �nishing time.

Because our algorithm returns a complete safety committee (select the correct statement):

k < m

k ≤ m

k = m

k ≥ m

k > m

First we establish that

Fact 2 For j = 1, . . . ,m, f(Sj) ≥ f(Tj).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Proof : This is clear for j = 1, because FILL IN THIS PART

Suppose now that it is true for Sj and Tj , and consider Sj+1 and Tj+1. Let S be the shift with the

earliest �nishing time amongst those that start after f(Sj).

FILL IN THIS PART

Hence f(Tj+1) ≤ f(Sj+1).

End Proof

In order to prove that (select the correct statement)

k < m

k ≤ m

k ≥ m

k > m

we only need to prove that every shift overlaps an element of S1, . . . , Sm. Indeed, if there were a shift

S that does not overlap any of them, then FILL IN THIS PART

This is clearly impossible, since in that case none of T1, . . . , Tm would overlap with S.

2 Recurrences resolve runtimes

1. Consider the following sorting algorithm:

define sloth_sort(A, first, last):

if A[first] < A[last]:

exchange A[first] and A[last]

if (first + 1 < last):

mid = (last - first + 1) // 3 # integer division

sloth_sort(A, first + mid, last) # sort last two-thirds

sloth_sort(A, first, last - mid) # sort first two-thirds

sloth_sort(A, first + mid, last) # sort last two-thirds again

a. Write a recurrence relation that describes the worst-case running time of function sloth_sort in

terms of n, where n = last− first+ 1. You can ignore �oors and ceilings.

b. What is the worst case running time of algorithm sloth_sort ?

2. Consider now this much less useful algorithm:

define not_useful(A, first, last):

if last < first + 4:

x = A[last] - A[first]

else:

x = not_useful(A, first+1, last-1) - not_useful(A, first+2, last-2)

return x

Write a recurrence relation that describes the worst-case running time of function not_useful in

terms of n, where n = last− first+ 1.

3. Finally, consider the following Python algorithm, which we may see again later this term:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

def deterministic_select(A, i):

if len(A) < 5:

sorted_A = sorted(A)

return sorted_A[i-1]

blocks = []

for b in range((len(A)-1) // 5 + 1): # That is, the ceiling of len(A)/5

blocks.append(sorted(A[b*5:(b+1)*5]))

medians = [block[len(block)//2] for block in blocks]

median_of_medians = deterministic_select(medians, len(medians) // 2 + 1)

lesser = [v for v in A if v < median_of_medians]

greater = [v for v in A if v > median_of_medians]

moms = [v for v in A if v == median_of_medians]

if len(lesser) < i <= len(lesser) + len(moms):

return median_of_medians

elif len(lesser) >= i:

return deterministic_select(lesser, i)

else:

return deterministic_select(greater, i - len(lesser) - len(moms))

Knowing that 0.3 len(A) < len(lesser) < 0.7 len(A), write a recurrence relation that de-

scribes the worst-case running time of function deterministic_select in terms of n, where n =
len(A).

3 Playing the Blame Game

A distributed computing system composed of n nodes is responsible for ensuring its own integrity against

attempts to subvert the network. To accomplish this, nodes in the system can assess each others' integrity,

which they always do in pairs. A node in such a pair with its integrity intact will correctly assess the node

it is paired with to report either "intact" or "subverted". However, a node that has been subverted may

freely report "intact" or "subverted" regardless of the other node's status.

The goal is for an outside authority to determine which nodes are intact and which are subverted. If

n/2 or more nodes have been subverted, then the authority cannot necessarily determine which nodes are

intact using any strategy based on this kind of pairing. However, if more than n/2 nodes are intact, it is

possible to con�dently determine which are which.

Throughout this problem, we assume that more than n/2 of the nodes are intact. Further, we let one

"round" of pairings be any number of pairings overall as long as each node participates in at most one

pairing. (I.e., a round is a matching that may not be perfect.)

ONLY PROBLEM IN THIS PART: Give an algorithm in clear, simple pseudocode that runs in

O(lg n) rounds and identi�es an intact node, and brie�y but clearly justify the correctness of your algorithm

via clear comments interspersed into the algorithm explaining what it does and why. (HINT: the quiz

problems should lead you in a useful direction!)

4 Mixed Nets

You're working on the routing for an anonymization service called a "mixnet" in which a network of

computers pass messages through a sequence of hando�s from one source computer to eventually reach

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

another target computer.

To represent this, you have a weakly-connected, directed acyclic graph (DAG) G = (V,E) composed of

designated source and target vertices s, t ∈ V and a set of p > 0 simple paths (along which p messages pass)

each of which starts at s, ends at t, and includes at least one vertex in between s and t. The paths are also
vertex disjoint besides s and t (i.e., no two paths share any other vertex). There are no other vertices or

edges in the graph. For example, here are two di�erent graphs both over the same set of vertices and both

with p = 2:

Graph #1 Graph #2
In fact, your mixnet actually involves a single set of computers (with a designated start and target

computer) and two entirely separate sets of paths among those computers, as with these two sample graphs.

At some point as each message passes along its path among the �rst set of paths, it switches to using one

of the second set of paths instead (never switching back).

Speci�cally, you have an overall graph G made up of two subgraphs G1 and G2 like those speci�ed in

the previous part, where one subgraph's vertices is an exact copy of the other's, i.e., G1 = (V1, E1) and
G2 = (V2, E2), where a vertex v1 ∈ V1 if and only if v2 ∈ V2. (s1 and t1 are the start and target vertices

in G1 and their corresponding vertices s2 and t2 are the start and target in G2.) Each subgraph is based

on its own set of p paths, but p is the same for both. There is also a directed edge (v1, v2) for each vertex

v1 ∈ V1 except s1 and t1 leading from G1 to G2. (There is no edge from s1 to s2 or t1 to t2.)
So, for the examples above, the overall graph would include both Graph 1 (with each node subscripted

like a1) and Graph 2 (with each node subscripted like a2) plus 4 more edges: (a1, a2), (b1, b2), (c1, c2), (d1, d2).
Your goal is to �nd p vertex-disjoint paths in the overall graph that start at s1 in G1 and end at t2 in

G2. Thus, no two paths visit the exact same vertex (besides s1 and t2). Additionally, you want to ensure

that no two paths even visit the same vertex in di�erent subgraphs (i.e., no path contains v1 if any other

path contains v2). We call two paths visiting the same vertex but in di�erent graphs a "con�ict".

1. In a valid instance of this problem, there is always a path from s1 to t2. Sketch the key points in a

proof of this fact. (Recall that p > 0.)

2. In a valid instance of this problem, there is never any path from t1 to t2. Sketch the key points in a

proof of this fact.

3. We now add the constraint to a valid instance of this problem that it must have some valid solution.

Finish the following solution to this problem via reduction to STP (i.e., SMP with ties allowed).

Let the �rst vertex along each of the paths out of s1 be v1,1, v1,2, . . . , v1,p. Let the last vertex along each
of the paths into t2 be u2,1, u2,2, . . . , u2,p. Let the men m1, . . . ,mp be the vertices v1,1, v1,2, . . . , v1,p.
Let the women w1, . . . , wp be the vertices u2,1, u2,2, . . . , u2,p.

Let man mi prefer women wj to woman wk when there is a path from s1 through v1,i to u2,j which
transitions from G1 to G2 after a steps (and no such path that transitions after fewer than a steps),

there is a path from s1 through v1,i to u2,k which transitions from G1 to G2 after b steps (and no

such path that transitions after fewer than b steps), and . (Let all women wk for

which there is no path from s1 through v1,i to u2,j be tied at the end of mi's preference list.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Let woman wi prefer man mj to man mk when. . . COMPLETE THIS PART. (Hint: think about

an arrangement that in some sense mirrors the previous set of preferences.)

Solve the resulting STP instance to produce the perfect matching S = {(wi,mj), (wk,ml), . . .}.

For each pair (wi,mj), use , always exploring edges that transition from G1 to G2

before edges that remain in G1, to �nd (and add to the solution set of paths) the �rst path leading

from s1 to v1,i and then via some number of edges to u2,j and then to t2.

4. Prove that since some valid solution exists, then some solution to the STP instance produced by the

reduction exists which contains no instabilities (weak or strong).

(This doesn't complete the proof that the reduction is correct, but it will present all the key insights.)

5 Cover Charge

In the "minimum edge cover" problem, the input is a simple, undirected, connected graph G = (V,E) with
|V | ≥ 2, and the output is the smallest possible set E′ such that E′ ⊆ E and for all vertices v ∈ V , there
is an edge {v, u} (which is the same as {u, v}) in E′. That is, every vertex in the graph is the endpoint of

some edge in E′.
A maximum matching in a graph G = (V,E) is the largest set E′′ such that E′′ ⊆ E and there are no

three vertices v1, v2, v3 ∈ V such that {v1, v2} and {v1, v3} are in E′′. That is: E′′ "marries o�" as many

vertices as possible without having any one vertex "married" to two or more vertices.

In this part, assume you have a connected graph G = (V,E) and a maximum matching for the graph

E′′.

1. Prove that if |E′′| = |E|+1
2 , then E′′ is a minimum edge cover.

2. Give an e�cient, optimal greedy algorithm to �nd a minimum edge cover for G = (V,E), given a

maximum matching in the graph E′′, and brie�y but clearly justify the correctness of your algorithm

via clear comments interspersed into the algorithm explaining what it does and why.

6 Bonus (OPTIONAL)

Worth 1 bonus point each:

1. Returning to the problem "Playing the Blame Game", give a short, extremely clear, and complete

proof that if exactly half of the nodes are subverted (assuming an even number of nodes), no strategy

whatsoever is guaranteed to �nd an intact node.

2. Returning to the problem "Cover Change", consider the following greedy algorithm for this problem:

Sort the vertices in increasing order by degree

Mark all vertices as uncovered

Let the cover E' be empty.

While there are vertices remaining, pick the next one v:

If v is uncovered:

If there is any neighbour u of v that is uncovered:

Find the uncovered neighbour u of v with lowest degree

Add {u, v} to E' and mark u and v as covered

Else:

Pick an arbitrary edge {u, v}, add it to E', and mark v as covered

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Prove that this algorithm is not optimal by providing a very cleanly drawn and clearly explained

counterexample. Your counterexample may not rely for its correctness (as a counterexample) on

tie-breaking behaviour in the algorithm.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Ol' McDonald is safer, he hi he hi ho
	Recurrences resolve runtimes
	Playing the Blame Game
	Mixed Nets
	Cover Charge
	Bonus (OPTIONAL)

