
CPSC 320 2017W2: Assignment 5

March 23, 2018

NOTE THESE UNUSUAL FACTS ABOUT THIS ASSIGNMENT:

1. Some parts are marked as "purely for practice". While we recommend working these problems and
will post a sample solution just after the assignment deadline, we will not grade the purely for practice
problems.

2. We will only grade a subset of the remaining problems and subproblems. (The same subset on all
students' submissions.) We will not announce which will be graded. We will release sample solutions
to all parts regardless.

3. There is a (somewhat unusual) due date and an "early" due date below. Any group whose last
submission is by the early due date will receive +1 point on the assignment and +1BP (in the course)
for each member of the group (and a discreet air-high-�ve-at-a-distance from the course sta�).

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify ev-
eryone in your group if you're making a group submission. (Reminder: groups can include a maximum of
three students; we strongly encourage groups of two.)

Remember that this assignment is based on the collected quizzes and quiz solutions. You will likely
want to refer to those where you need more details on assignment questions.

Submit by the UNUSUAL deadline Thursday 5 Apr at 10PM. If your last submission
is no later than Tuesday 3 Apr at 10PM, each member of your group will also receive one
bonus point and a discreet (or maybe discrete?) air-high-�ve-at-a-distance from a member of
the course sta�.

For credit, your group must make a single submission via one group member's account, marking all
other group members and the pages associated with each problem in that submission using GradeScope's
interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quizzes). Put these in order starting each problem on a new page, ideally. If not,
very clearly and prominently indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. (Please do NOT include your name on the assignment, however.1)

1If you don't mind private information being stored outside Canada and want an extra double-check on your identity,

include your student number rather than your name.
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� Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

1 When You Have Eliminated the Uncruftable

THIS PROBLEM IS PURELY FOR PRACTICE AND WILL NOT BE MARKED.

In the hit game MyCruft (homes edition), your character has a limited supply S of k types of resources
(resources that might be things like pipes, revolvers, caps, clues, and suspects but which we just call
r1, r2, . . . , rk). The supply of each resource ri is a non-negative integer S[ri].

Your character is also capable of "crufting" resources according to a list of c crufting "formulas". A
crufting formula has a non-empty input list of resources (that may contain duplicates if more than one of
a particular type of resource is required) and a non-empty output list of resources of the same format. To
apply a crufting rule, your character uses (removes from your supply) exactly the input list of resources
and produces the exact output list of resources.

Note that the same resource may appear in both the input list and the output list. However, each
crufting rule's input list is longer than its output list.

For example, a crufting rule with input list "pipe, pipe, cap, cap, cap" and output list "clue, cap, cap"
would consume two of the resource named "pipe" and three of the resource named "cap" and produce one
of the resource named "clue" and two of the resource named "cap". This rule cannot be run if only two or
fewer caps are available, even though it only consumes a net of one cap. (With resources named r1, r2, r3, . . .
for "pipe, cap, clue, . . . " that rule would be: r1, r1, r2, r2, r2 → r3, r2, r2.)

Your goal is to determine the maximum number of resource rk that it is possible to accumulate via
application of crufting rules, starting from S.

1. Complete the following design of a clear, concise, correct, brute force, recursive algorithm to solve
this problem.

// Accepts initial resource amounts S[1..k] and crufting rules Rules[1..c].

// Rules[i] has two fields Rules[i].input and Rules[i].output. For the

// purposes of this algorithm: we assume that S, the rules' input lists, and

// the rules' output lists are all represented in the same way. Further,

// we have the following functions:

//

// sufficient(s1, s2): takes two resource arrays (S or an input or output list)

// and returns True iff s1 has at least as many resources

// of every type as s2 (False otherwise). So, e.g., if

// sufficient(S, Rules[2].input), then Rules[2] can be

// applied to S.

//

// deduct(s1, s2): takes two resource arrays and returns the result of

// subtracting s2 from s1 resource-by-resource. So, e.g.,

// deduct(S, Rules[2].input) would be the remaining resources

// after consuming the resources required by Rules[2] to apply.

//
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// add(s1, s2): takes two resource arrays and returns the result of

// adding s2 to s1 resource-by-resource. So, e.g.,

// add(S, Rules[2].output) would be the total resources after

// after producing the resources created by application of Rules[2].

//

// Precondition: k > 0.

define cruft_rk(S, Rules):

k = len(S)

c = len(Rules)

define helper(S):

// COMPLETE THE (RECURSIVE) HELPER FUNCTION

// Rules, k, and c are available as needed here.

//

// NOTE: Our solution is 10 lines or fewer.

// If yours is significantly longer or more

// complex than ours, it will receive no credit.

return helper(S)

2. If we memoize this algorithm, we will do so on the basis of S, the parameter that changes in calls
to helper. A friend claims that the memory used in the memoization table is Θ(k), since there are
k entries in S. (Speci�cally, the friend says the memoization table will have Θ(k) entries that each
record a single number (with a single, reasonable meaning). For this problem, we assume the space
for each entry is constant, which isn't quite accurate, but is reasonable for our analysis.)

This claim is incorrect.

Now, clearly and concisely explain why the actual memory used may depend on the contents of
S, not just its length.

2 Clique and Claque

In graph theory, CLIQUE is the problem of �nding the largest "clique" (complete subgraph) in a simple
graph. So, given an unweighted, undirected graph, �nd the largest subset of the vertices in the graph such
that each pair of vertices in the subset have edges between them.

In CPSC 320, a "claque" is a set of k > 0 vertices {v1, . . . , vk} in a directed graph such that {v2, . . . , vk}
have no edges between them but there is an edge (vi, v1) for each vi ∈ {v2, . . . , vk}. CLAQUE is the problem
of �nding the largest claque in a directed, unweighted graph (with no self-edges like (v, v)).

Finally, let the complement of a graph G = (V,E) be Gc = (V,E′), where (u, v) ∈ E′ ↔ (u, v) 6∈ E.
In other words, an edge leads from one vertex to another in Gc exactly when no edge leads from the �rst
to the second in G. We de�ne this for directed graphs, but it has an exact parallel for undirected graphs
where any two vertices are connected in Gc exactly when they're not connected in G.

We now introduce decision variants of CLIQUE and CLAQUE called dCLIQUE and dCLAQUE. Each is
exactly like its corresponding non-decision problem above, except an instance has an additional parameter
k and asks whether a clique (in dCLIQUE) or claque (in dCLAQUE) exists in the graph of size at least k.
(Note that the size of the claque includes the "special" �rst vertex.)

Your job in this part is to prove that dCLAQUE is NP-Complete given that dCLIQUE is in NP-hard.
The reduction from the quiz solution won't quite work for this purpose, but it's a good start! Proceed in
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the following steps. (Your solution must include the numbering and bolded initial statements below and
then work from there to receive any credit.)

1. We �rst prove that dCLAQUE is in NP. A natural certi�cate ("real" solution) to a

dCLAQUE problem is . . .

Given a dCLAQUE instance and such a certi�cate, we can verify the certi�cate in time

polynomial in the instance size by . . .

Therefore, dCLAQUE is in NP.

2. We next prove that dCLAQUE is in NP-hard by reducing from a known NP-hard prob-

lem (dCLIQUE) to dCLAQUE.

(a) Here is the reduction:

To transform an instance of dCLIQUE to an instance of dCLAQUE:

� . . .

To transform the solution of the dCLAQUE instance to a solution to the dCLIQUE

instance: We simply produce YES as the solution if the dCLAQUE solution was

YES and NO otherwise.

(b) We brie�y sketch the key points in the proof that the reduction is correct.

i. The reduction above produces a valid dCLAQUE instance for every dCLIQUE

instances because . . .

ii. The reduction above clearly produces a valid dCLAQUE solution (i.e., it pro-

duces either YES or NO). (There's nothing to �ll in here!)

iii. If (in the reduction above) the solution to the dCLIQUE instance was YES, then

the solution to the dCLAQUE solution produced by the reduction is also YES

because . . .

iv. If (in the reduction above) the solution to the dCLAQUE instance produced by

the reduction is YES, then the solution to the original dCLIQUE instance was

also YES because . . .

Therefore the reduction is correct.

(c) We very brie�y justify that the reduction runs in time polynomial in the size of the

dCLIQUE instance: . . .

Given that we have a correct, polynomial time reduction from an NP-hard problem to

dCLAQUE, dCLAQUE itself is in NP-hard.

Since dCLAQUE is both in NP and in NP-hard, it is in NP-complete.

3 Stable Weddings

THIS PROBLEM IS PURELY FOR PRACTICE AND WILL NOT BE MARKED. THUS,

NO ONE NEED FEEL COERCED INTO AGREEING WITH THE LUDICROUS AD-

DENDA TO THE PROOF (even if they are manifestly true).
In the "Stable Wedding" problem (SWP), you are given a set of n guests, a list of "disallowed" subsets

of the set of guests (each with at least two guests), and a list of positive integer table sizes. You cannot
seat all the guests in a disallowed subset together at the same table (but you could seat, e.g., all but one
of them). You want to �nd an assignment of guests to tables (that may leave some guests unassigned) that
maximizes the total number of guests at the tables, breaking ties by minimum number of tables used. (If
two solutions both seat 10 people but one uses 3 tables and the other 4, the former solution is better. If
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one solution seats 11 people and the other seats only 10, the former solution is better, regardless of the
number of tables used.)

1. Fill in the blanks in the following to generate a reasonable decision variant of SWP.

We now introduce a decision variant of SWP called dSWP. dSWP is exactly like SWP,
except an instance has two additional parameters j and k and asks whether a seating

assignment exists that seats j guests using k tables.

2. Your job in this part is to prove that dSWP is NP-Complete given that 3SAT is in NP-hard. Proceed
in the following steps. (Your solution must include the numbering and bolded initial statements
below and then work from there to receive any credit.)

Hint: If you had a negation, you probably wouldn't want to sit with them.

(a) We �rst prove that dSWP is in NP. A natural certi�cate ("real" solution) to a dSWP

problem is . . .

Given a dSWP instance and such a certi�cate, we can verify the certi�cate in time

polynomial in the instance size by . . .

Therefore, dSWP is in NP.

(b) We next prove that dSWP is in NP-hard by reducing from a known NP-hard prob-

lem (3SAT) to dSWP.

i. Here is the reduction:
To transform an instance of 3SAT to an instance of dSWP:

� . . .

To transform the solution of the dSWP instance to a solution to the 3SAT

instance: We simply produce YES as the solution if the dSWP solution was

YES and NO otherwise.

ii. We brie�y sketch the key points in the proof that the reduction is correct.

A. The reduction above produces a valid dSWP instance for every 3SAT in-

stances because . . .

B. The reduction above clearly produces a valid dSWP solution (i.e., it produces

either YES or NO). (There's nothing to �ll in here!)

C. If (in the reduction above) the solution to the 3SAT instance was YES, then

the solution to the dSWP solution produced by the reduction is also YES

because . . .

D. If (in the reduction above) the solution to the dSWP instance produced by

the reduction is YES, then the solution to the original 3SAT instance was

also YES because . . .

Therefore the reduction is correct.

iii. We very brie�y justify that the reduction runs in time polynomial in the size of

the 3SAT instance: . . .

Given that we have a correct, polynomial time reduction from an NP-hard problem

to dSWP, dSWP itself is in NP-hard.

Since dSWP is both in NP and in NP-hard, it is in NP-complete.

That whole process felt eerily like the other NP-completeness proof above. I feel like

maybe this is how NP-completeness proofs usually work. Hockey and puppies are prob-

ably mostly good things. I have to include all these bolded statements. I remember
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that. Patrice can probably crush walnuts with his bare hands. Steve's beard looks good

with those grey streaks.

4 High-stress, low-stress, no stress

You are managing a consulting team of expert computer hackers, and each week you have to choose a
job for them to undertake. Now, as you can well imagine, the set of possible jobs is divided into those
that are low-stress (e.g., setting up a Web site for a class at the local elementary school) and those that
are high-stress (e.g., protecting the nation's most valuable secrets, or helping a desperate group of UBC
students �nish an assignment on dynamic programming). The basic question, each week, is whether to take
on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week i, then you get a revenue of li ≥ 0 dollars; if you
select a high-stress job, you get a revenue of hi ≥ 0 dollars. The catch, however, is that in order for the
team to take on a high-stress job in week i, it is required that they do no job (of either type) in week i− 1;
they need a full week of preparation to get ready for the crushing stress level. On the other hand, it is okay
for them to take a low-stress job in week i even if they have done a job (of either type) in week i− 1.

So, given a sequence of n weeks, a plan is speci�ed by a choice of �low-stress�, �high-stress�, or �none�
for each of the n weeks, with the property if that �high-stress� is chosen for week i > 1 then �none� has
to be chosen for week i − 1 (choosing a high-stress job in week 1 is acceptable). The value of the plan is
determined in the natural way: for each i, you add li to the value if you choose �low-stress� in week i, and
you add hi to the value if you choose �high-stress� in week i (you add 0 if you choose �none� in week i).

The problem: Given sets of values l1, . . . , ln and h1, . . . , hn, �nd a plan of maximum value (such a plan
will be called optimal).

Recall from the quiz that the following recurrence relation describes the value nojob[i]:

low-stress-job[i] = l[i] + max{nojob[i− 1], low-stress-job[i− 1], high-stress-job[i− 1]}

1. Write a recurrence relation for nojob[i].:

2. Next write a recurrence relation for high-stress-job[i]:

3. Using these three recurrences, complete the following algorithm that returns the best value for a
sequence of jobs for n weeks. The parameters L and H are arrays with the li and hi values.

define best_job_sequence(L, H):

nojob[0] = 0

low-stress-job[0] = 0

high-stress-job[0] = 0

...

4. Finally write a function list_best_jobs that takes as input the arrays L and H, and returns an
array J where J [i] is one of N, L or H depending on whether the job taken during week i is no job, a
low-stress job, or a high-stress job.
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5 Gossiping lazily, but surely

UBC students love to gossip. However they are also extremely busy, and so while they want to make sure
every other UBC student hears about an interesting piece of gossip that any of them has heard, they don't
want to spend too much time passing the information around. That is, they want to limit the number
of other students they will chat with about the information to be at most k, while still ensuring the
information is distributed to everybody.

You can think of the set of UBC students as a connected, undirected graph U , where each student is a
vertex, and an edge joins two students if they know each other's phone numbers. One student/vertex learns
a piece of gossip �rst, and we want to spread it to everyone. The vertices of U , and the smallest possible
subset of the edges of U that achieves both conditions listed above is a spanning tree of G in which every
vertex has degree at most k.

The Hamiltonian Path problem is de�ned as follows: given a graph G = (V,E) with n vertices, we want
to �nd an ordering vi,1, vi,2, . . . vi,n of the vertices with the property that for each j in the set {1, . . . , n−1}
the pair {vi,j , vi,j+1} is an edge of G.

1. Describe succintly a reduction from the Hamiltonian Path problem into the maximum degree 2 span-
ning tree problem (MD2SP). Explain

� What vertices the graph G′ in the instance of MD2SP has.

� What edges the graph G′ in the instance of MD2SP has.

� How to convert a solution to the MD2SP problem into a solution to the Hamiltonian Path
problem.

2. Now describe succintly a reduction from the Hamiltonian Path problem into the maximum degree k
spanning tree problem (MDkSP). Once again, explain

� What vertices the graph G′ in the instance of MDkSP has.

� What edges the graph G′ in the instance of MDkSP has.

� How to convert a solution to the MDkSP problem into a solution to the Hamiltonian Path
problem.

3. Complete the following proof that MDkSP is NP-Complete:

� First, we prove that MDkSP belongs to NP. Given an instance of MDkSP, a natural certi�cate
to a MDkSP problem is . . .

� Given an instance of MDkSP and its certi�cate, we can verify the certi�cate in polynomial time
by checking that . . .

� Now we take a known NP-Complete problem:

� We reduce an arbitrary instance of into an instance of MDkSP as . . .

� This reduction runs in time because . . .

� If the answer to the instance of is Yes, then the answer to the instance of

MDkSP is Yes because . . .
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� If the answer to the instance of MDkSP is Yes, then the answer to the instance of

is Yes because . . .

6 Astronomy evenings

On most clear days, a group of your friends in the Astronomy department gets together to plan out the
astronomical events they are going to try observing that night. We will make the following assumptions
about the events.

� There are n events, which for simplicity we will assume occur in sequence separated by exactly one
minute each. Thus event j occurs at minute j; if they fail to observe this event at exactly minute j,
then your friends miss out on it.

� The sky is mapped according to a one-dimensional coordinate system, measured in "points" along an
axis with the initial telescope position as 0; event j will be taking place at point pj , for some integer
value pj . The telescope starts at point 0 at minute 0.

� The last event n is much more important than the others; so it is required that they observe event n.

The Astronomy department operates a large telescope that can be used for viewing these events. Because
it is such a complex instrument, it can only move at a rate of one point per minute. Thus they do not
expect to be able to observe all n events; they just want to observe as many as possible, limited by the
operation of the telescope and the requirement that event n must be observed.

We say that a subset S of the events is viewable if it is possible to observe each event j ∈ S at its
appointed time j, and the telescope has adequate time (moving at its maximum of one point per minute)
to move between consecutive events in S.

The problem: given the points of each of the n events, �nd a viewable subset of maximum size, subject
to the requirement that it should contain event n. Such a solution will be called optimal.

1. Give a recurrence relation for the maximum number of events you will be able to observe from time
0 to time k, assuming that you must be able to observe the element at time k. Hint: think about
the answer to question 3 on the quiz.

count[k] =

2. Complete the following algorithm that returns the largest number of events you can observe from
time 0 to time n. The parameter P is an array with the coordinate P [i] of each event at time i.

define best_events_to_observe(P, n):

count[0] = 0

...

3. Write a function list_best_events that takes as input any array that your answer to question 2
may have constructed, and returns a list of the times of the events that you will be able to observe
in the optimal solution.
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4. Analyze the time and space complexity of your algorithm: your algorithm takes time

and space .
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