
CPSC 320 2017W2: Tutorial quiz 5

March 23, 2018

1 When You Have Eliminated the Uncruftable

In the hit game MyCruft (homes edition), your character has a limited supply S of k types of resources
(resources that might be things like pipes, revolvers, caps, clues, and suspects but which we just call
r1, r2, . . . , rk). The supply of each resource ri is a non-negative integer S[ri].

Your character is also capable of "crufting" resources according to a list of c crufting "formulas". A
crufting formula has a non-empty input list of resources (that may contain duplicates if more than one of
a particular type of resource is required) and a non-empty output list of resources of the same format. To
apply a crufting rule, your character uses (removes from your supply) exactly the input list of resources
and produces the exact output list of resources.

Note that the same resource may appear in both the input list and the output list. However, each
crufting rule's input list is longer than its output list.

For example, a crufting rule with input list "pipe, pipe, cap, cap, cap" and output list "clue, cap, cap"
would consume two of the resource named "pipe" and three of the resource named "cap" and produce one
of the resource named "clue" and two of the resource named "cap". This rule cannot be run if only two or
fewer caps are available, even though it only consumes a net of one cap. (With resources named r1, r2, r3, . . .
for "pipe, cap, clue, . . . " that rule would be: r1, r1, r2, r2, r2 → r3, r2, r2.)

Your goal is to determine the maximum number of resource rk that it is possible to accumulate via
application of crufting rules, starting from S.

1. What is the solution to an instance where there are k = 4 resources r1, r2, r3, r4; the two cruft-
ing rules are r1, r1 → r2 and r1, r1, r2, r3 → r4, r4, r3; and the initial resources S (listed as
[S[r1], S[r2], S[r3], S[r4]]) are [6, 1, 3, 1]?

Maximum achievable rk is .

2. If we were designing a brute force, recursive algorithm to solve this problem, we would want to identify
base cases (i.e., "trivial" cases). Fill in the circle next to the most important factor that describes
a base case instance of this problem.

There are no remaining supplies besides rk
The available supplies exactly match the input of a single crufting rule.

There are insu�cient resources to apply any crufting rule.

k = 0

c = 0

n = 0

UNGRADED: Design the outline of a brute force, recursive algorithm to solve this problem!

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. With resources r1, . . . , rk, what is the smallest possible value for k and an extremely simple crufting
rule that would illustrate what could go wrong if this restriction from above were not included: "each
crufting rule's input list is longer than its output list."

k is . The crufting rule is → .

4. In a recursive case, a brute force, recursive algorithm will generally �nd a "�rst choice" that divides
the problem into subproblems. What is the critical "�rst choice" in a brute force, recursive algorithm
to solve this problem? Fill in the circle next to the best answer.

should we apply crufting rule c now or never apply it again?

which crufting rule should we apply next?

how many of r1 should we use up next?

should we use up r1 next or not?

which resource should we use next?

5. We can use the insights above to design a brute force, recursive algorithm to solve this problem. What
is the maximum number of recursive calls that a given call to this algorithm will make (we are not
asking about the depth of the recursion tree; we want the largest possible number of children of a
node) ?

The maximum number of calls is: .

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 Clique and Claque

In graph theory, CLIQUE is the problem of �nding the largest "clique" (complete subgraph) in a simple
graph. So, given an unweighted, undirected graph, �nd the largest subset of the vertices in the graph such
that each pair of vertices in the subset have edges between them.

In CPSC 320, a "claque" is a set of k > 0 vertices {v1, . . . , vk} in a directed graph such that {v2, . . . , vk}
have no edges between them but there is an edge (vi, v1) for each vi ∈ {v2, . . . , vk}. CLAQUE is the problem
of �nding the largest claque in a directed, unweighted graph (with no self-edges like (v, v)).

To avoid confusion, we'll write "clique-with-an-I" and "claque-with-an-A" below.
Finally, let the complement of a graph G = (V,E) be Gc = (V,E′), where (u, v) ∈ E′ ↔ (u, v) 6∈ E.

In other words, an edge leads from one vertex to another in Gc exactly when no edge leads from the �rst
to the second in G. We de�ne this for directed graphs, but it has an exact parallel for undirected graphs
where any two vertices are connected in Gc exactly when they're not connected in G.

1. For this (and the next two problems), consider the following graph:

List the vertices in the largest claque-with-an-A in this graph.

v1 = .

List {v2, . . . , vk} in sorted order, separated by commas: .

2. Draw the complement of the graph above. (Ungraded but useful practice)

3. Now, imagine that we "erase" the direction of each edge. (So, where there is a directed edge (a, b),
there is now an undirected edge {a, b}. Where there were bidirectional edges (b, c) and (c, b), there
is now one undirected edge {b, c}.) List the vertices in the largest clique-with-an-I in the resulting
undirected graph in alphabetical order, separated by commas.

Vertices:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4. Complete the following (correct) reduction from CLIQUE to CLAQUE:

To transform an instance of CLIQUE to an instance of CLAQUE:

� Let Gc be the complement of the CLIQUE graph G.

� For each vertex v ∈ V in Gc, produce in a new graph G′ (which is the

CLAQUE instance).

� For each edge {u, v} in Gc, produce and in G′.

� Add a vertex x toG′. For each produce .

To transform the solution of the CLAQUE instance to a solution to the CLIQUE instance:

Given {v1, v2, . . . , vk} in the CLAQUE solution, let the CLIQUE solution be .

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Gossiping lazily, but surely

UBC students love to gossip. However they are also extremely busy, and so while they want to make sure
every other UBC student hears about an interesting piece of gossip that any of them has heard, they don't
want to spend too much time passing the information around. That is, they want to limit the number
of other students they will chat with about the information to be at most k, while still ensuring the
information is distributed to everybody.

You can think of the set of UBC students as a connected, undirected graph U , where each student is
a vertex, and an edge joins two students if they know each other's phone numbers. One student/vertex
learns a piece of gossip �rst, and we want to spread it to everyone.

1. Fill in the blanks below to accurately describe the smallest possible subset of the edges of U that
achieves both conditions listed above:

� everybody hears the gossip no matter who learned about the information �rst

� no one needs to have more than k phone conversations about a single piece of information.

Together with the vertices, that subset forms a with a maximum

of .

It will help to draw and solve several small and trivial examples!

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2. Consider the following algorithm whose goal is to �nd a spanning tree of a graph where every vertex
has degree ≤ 3:

Sort the edges of G by increasing max degree of their endpoints;

that is, we compare two edges by comparing the larger-degree

endpoint of one edge against the larger-degree endpoint of

the other edge; ties are broken arbitrarily

Initialize each node as its own category in T.

Initialize the category count to |V|.

While we have more than 1 category:

Remove an edge (u,v) from the list of edges.

If u and v are not in the same category:

If degree(u) in T ≤ 3 and degree(v) in T ≤ 3:

Add the edge (u, v) to T

Merge u's and v's categories

Reduce the category count by 1.

Depending on tie-breaking behaviour, the algorithm can fail to �nd a tree that meets the degree
requirement on the following instance, even though such a tree exists:

Draw a correct tree for this instance here:

Draw an incorrect answer that the algorithm could produce (depending on tie-breaking behaviour)
here:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 Stable Weddings

Wedding theorists posit that seating arrangements at wedding parties are the most di�cult algorithmic
problem known to humanity. Let's explore that assertion.

In the "Stable Wedding" problem (SWP), you are given a set of n guests, a list of "disallowed" subsets
of the set of guests (each with at least two guests), and a list of positive integer table sizes. You cannot
seat all the guests in a disallowed subset together at the same table (but you could seat, e.g., all but one
of them). You want to �nd an assignment of guests to tables (that may leave some guests unassigned) that
maximizes the total number of guests at the tables, breaking ties by minimum number of tables used. (If
two solutions both seat 10 people but one uses 3 tables and the other 4, the former solution is better. If
one solution seats 11 people and the other seats only 10, the former solution is better, regardless of the
number of tables used.)

1. Solve the following SWP instance. In your solution, list the guests at each table in ascending order,
separated by commas. (E.g., if guests 1, 5, and 3 were at a table, write 1, 3, 5 in its blank.)

The guests are {1, 2, 3, 4, 5}. The disallowed subsets are: {1, 2}, {1, 3, 5}, and {2, 4}. There are three
tables. Table 1 has 4 seats. Table 2 has 2 seats. Table 3 has 1 seat.

The optimal solution to the problem is:

(a) Guests at table 1: (c) Guests at table 3:

(b) Guests at table 2:

2. In the Independent Set (IS) optimization problem, we are given a simple (undirected, unweighted)
graph and want to �nd the largest subset of vertices V ′ such that there is no pair of vertices u, v ∈ V ′

that have an edge between them.

Complete the following reduction from IS to SWP.

To transform an instance of IS to an instance of SWP: Let the guests in SWP be the

from IS. For each edge {u, v} in IS, produce a

in SWP. The table list in SWP should be: .

To transform the solution of the SWP instance to a solution to the IS instance: Produce

.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. A similar problem called SWP2 is the same as SWP except that you are not allowed to seat any of
the guests in a disallowed subset at the same table. (They all hate each other.) Fill in the single
blank in the following reduction from SWP2 to SWP to make a clear, correct reduction:

To transform an instance of SWP2 to an instance of SWP: Copy across the guests and tables.

For each disallowed subset Si in the SWP2 instance, copy each within Si

into the SWP instance as a disallowed subset.

To transform the solution of the SWP instance to a solution to the SWP2 instance:

Simply copy the solution across.

4. Consider the following claim: "If there are at least 2n seats total at the tables, then it must be possible
to seat all the guests."

Is this claim true or false? Fill in the circle next to the best answer.

True False

5. An ino�ensive guest is one that participates in no disallowed subsets.

Consider the following claim: "For any SWP instance with at least one ino�ensive guest and a unique
largest table, an optimal solution must exist that seats an ino�ensive guest at that largest table."

Is this claim true or false? Fill in the circle next to the best answer.

True False

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5 High-stress, low-stress, no stress

You are managing a consulting team of expert computer hackers, and each week you have to choose a
job for them to undertake. Now, as you can well imagine, the set of possible jobs is divided into those
that are low-stress (e.g., setting up a Web site for a class at the local elementary school) and those that
are high-stress (e.g., protecting the nation's most valuable secrets, or helping a desperate group of UBC
students �nish an assignment on dynamic programming). The basic question, each week, is whether to take
on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week i, then you get a revenue of li ≥ 0 dollars; if you
select a high-stress job, you get a revenue of hi ≥ 0 dollars. The catch, however, is that in order for the
team to take on a high-stress job in week i, it is required that they do no job (of either type) in week i− 1;
they need a full week of preparation to get ready for the crushing stress level. On the other hand, it is okay
for them to take a low-stress job in week i even if they have done a job (of either type) in week i− 1.

So, given a sequence of n weeks, a plan is speci�ed by a choice of �low-stress�, �high-stress�, or �none�
for each of the n weeks, with the property if that �high-stress� is chosen for week i > 1 then �none� has
to be chosen for week i − 1 (choosing a high-stress job in week 1 is acceptable). The value of the plan is
determined in the natural way: for each i, you add li to the value if you choose �low-stress� in week i, and
you add hi to the value if you choose �high-stress� in week i (you add 0 if you choose �none� in week i).

The problem: Given sets of values l1, . . . , ln and h1, . . . , hn, �nd a plan of maximum value (such a plan
will be called optimal).

1. [For the group stage only] Give one trivial instance and at least two small instances of this problem.
For each instance, indicate the optimal solution.

2. [For the group stage only] Pick a simple, plausible, but suboptimal greedy approach and then generate
a counterexample to its optimality.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Show that the following greedy algorithm does not correctly solve this problem, by giving an instance
on which it does not return the correct answer:

i = 1

while i ≤ n:

if i < n and hi+1 > li + li+1:

output "choose no job in week i"

output "choose a high-stress job in week i+1"

i = i + 2

else:

output "choose a low-stress job in week i"

i = i + 1

Write the instance here:

Week 1 Week 2 Week 3

li

hi

Write the correct answer for your instance here:

Week 1 Week 2 Week 3

Job type

and the answer incorrectly returned by the algorithm here:

Week 1 Week 2 Week 3

Job type

4. Let nojob[i], low-stress-job[i] and high-stress-job[i] denote the values of the best plans for the �rst i
weeks that have no job, a low-stress job, or a high-stress job during week i. Write a recurrence relation
for low-stress-job[i]. If you want, you can abbreviate nojob[i], low-stress-job[i] and high-stress-job[i] to
nj[i], ls[i] and hs[i] respectively.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6 Astronomy evenings

On most clear days, a group of your friends in the Astronomy department gets together to plan out the
astronomical events they are going to try observing that night. We will make the following assumptions
about the events.

� There are n events, which for simplicity we will assume occur in sequence separated by exactly one
minute each. Thus event j occurs at minute j; if they fail to observe this event at exactly minute j,
then your friends miss out on it.

� The sky is mapped according to a one-dimensional coordinate system, measured in "points" along an
axis with the initial telescope position as 0; event j will be taking place at point pj , for some integer
value pj . The telescope starts at point 0 at minute 0.

� The last event n is much more important than the others; so it is required that they observe event n.

The Astronomy department operates a large telescope that can be used for viewing these events. Because
it is such a complex instrument, it can only move at a rate of one point per minute. Thus they do not
expect to be able to observe all n events; they just want to observe as many as possible, limited by the
operation of the telescope and the requirement that event n must be observed.

We say that a subset S of the events is viewable if it is possible to observe each event j ∈ S at its
appointed time j, and the telescope has adequate time (moving at its maximum of one point per minute)
to move between consecutive events in S.

The problem: given the points of each of the n events, �nd a viewable subset of maximum size, subject
to the requirement that it should contain event n. Such a solution will be called optimal.

1. [For the group stage only] Give one trivial instance and at least two small instances of this problem.
For each instance, indicate the optimal solution.

2. [For the group stage only] Pick a simple, plausible, but suboptimal greedy approach and then generate
a counterexample to its optimality.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Show that the following algorithm does not correctly solve this problem, by giving an instance on
which it does not return the correct answer.

Mark all events j with |pn − pj | > n− j as illegal.

Mark all other events as legal.

Initialize current position to point 0 at minute 0.

While not at end of event sequence:

Find earliest legal event j reachable from current position.

Add j to S.
Update current position to point pj at minute j.

Return S

Write the instance here:

Event 1 2 3 4

Point

The optimal solution is

and the answer incorrectly returned by the algorithm is:

4. Suppose that at time j you are viewing an event at position pj . Write a necessary and su�cient
condition for being able to view an event at time k, where k > j, and no events are viewed in-between
times j and k.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	When You Have Eliminated the Uncruftable
	Clique and Claque
	Gossiping lazily, but surely
	Stable Weddings
	High-stress, low-stress, no stress
	Astronomy evenings

