
CPSC 320 Sample Soln: Memoization and Dynamic Programming,

Part 1

March 12, 2018

(The solutions solve a few problems that we cut from the worksheet but still might be useful in reading

the solution process.)

You work for the First CitiWide Bank, a bank that makes change. That's just what you do.

1 Greedy Change

Assuming an unlimited supply of quarters (25 cents), dimes (10 cents), nickels (5 cents), and pennies (1

cent, once upon a time), give a greedy algorithm to make change for n ≥ 0 cents using the smallest total

number of coins. Prove your algorithm correct.

SOLUTION: 0 cents of change is a trivial example. How many coins does it take to give 0 cents in

change? None. We might also think of 1, 5, 10, and 25 as trivial examples. Each takes the coin matching

its denomination. Here are some more examples:

� 2: 2 coins (2 pennies)

� 4: 4 coins (4 pennies)

� 6: 2 coins (1 nickel, 1 penny)

� 16: 3 coins (1 dime, 1 nickel, and 1 penny)

� 33: 5 coins (1 quarter, 1 dime, and 3 pennies)

� 142: 9 coins (5 quarters, 1 dime, 1 nickel, 2 pennies)

Generally, it looks like we can just take the largest possible coin out �rst and then solve the remaining

problem. Let's name our algorithm and describe it:

CoinsChange(n):

if n = 0:

return [] // empty list of 0 coins

else if n >= 25:

return [quarter] + CoinsChange(n-25)

else if n >= 10:

return [dime] + CoinsChange(n-10)

else if n >= 5:

return [nickel] + CoinsChange(n-5)

else:

return [penny] + CoinsChange(n-1)

// You could rewrite that recursive code as a loop.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://snltranscripts.jt.org/88/88achangebank1.phtml
http://creativecommons.org/licenses/by/4.0/


// You might also note that we can use integer division

// and remainder to immediately figure out the number

// of quarters we can use and reduce the problem to

// one where we check on dimes next. We won't use that

// solution, since the other versions illustrate a

// handy point for the rest of our program!

Of the remainder of the problems, we'll give special emphasis to brute force. Here, (the recursive case

of) a brute force algorithm looks something like this: Return the best of these possibilities. (1) Give a

quarter and then n−25 cents of change. (2) Give a dime and then n−10 cents of change. (3) Give a nickel

and then n− 5 cents of change. (4) Give a penny and then n− 1 cents of change.

That will sound eerily familiar when we put together our dynamic programming solution!

2 Brother, I Can't Spare a Nickel

A few years back, the Canadian government eliminated the penny. Imagine the Canadian government

accidentally eliminated the nickel rather than the penny. (That is, assume you have an unlimited supply

of quarters, dimes, and pennies, but no nickels.)

1. Adapt your greedy algorithm to this problem and then challenge your approach by designing and

testing at least 2 examples that probe its weaknesses.

SOLUTION: It's straightforward to simply eliminate the "nickel" case from the greedy algorithm

above. It's not obvious that this breaks the algorithm, and yet it does!

The �rst of our small cases above that fails is the 33 case. Our algorithm now says this is 9 coins (1

quarter and 8 pennies), but the optimal solution is only 6 coins (3 dimes and 3 pennies).

Working from there, we can see that the smallest failing case is n = 30, for which the optimal solution

is 3 dimes rather than 1 quarter and 5 pennies.

2. We can solve this problem with something like a divide-and-conquer algorithm. (In this case, using a

brute-force, recursive approach.)

(a) To make the change, you must start by handing the customer some coin. What are your options?

SOLUTION: At this point (without nickels), our options are to hand out a quarter, a dime, or

a penny.

(b) Imagine that in order to make 81 cents of change using the fewest coins possible, you have to

start by handing the customer a quarter. Clearly describe the problem you are left with (but

don't solve it). It may help to give names to quantities and concepts in the problem if you

haven't already!

SOLUTION: If we have to start with a quarter, then I've already broken the problem down

from the n = 81 case to the n = 81− 25 = 56 case.

Using some names. Let N(n) be the number of coins needed to make n cents in change. Then,

if we must use a quarter �rst, N(81) = N(81− 25) + 1 = N(56) + 1.

We note that even if a quarter isn't the right move, it still gives us an upper-bound on the number

of coins (which is a lower-bound on the quality of the solution): N(81) ≤ N(81− 25) + 1.

(c) Write down descriptions of the subproblems for each of your other "�rst coin" options (besides

a quarter).

SOLUTION: With a dime: N(81) ≤ N(81− 10) + 1 = N(71) + 1.

With a penny: N(81) ≤ N(81− 1) + 1 = N(80) + 1.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


(d) Given an optimal solution to each subproblem, how will you tell which coin to choose �rst?

SOLUTION: Not only is each of these an upper-bound on the number of coins we might use,

they also represent all the possibilities. ANY way we give change must start with one of a

quarter, a dime, or a penny. Therefore, whichever of these three is best is the best solution:

N(81) = min {N(81− 25) + 1, N(81− 10) + 1, N(81− 1) + 1}
We can easily generalize that to a recursive formula for N(n) for su�ciently large n: N(n) =
min {N(n− 25) + 1, N(n− 10) + 1, N(n− 1) + 1}.

3. It's hard to describe a recursive algorithm without naming it. We'll name the algorithm CCC(n) (for

CountCoinsChange(n)). CCC(n) returns the minimum number of coins required to make n cents

of change using only pennies, dimes, and quarters. Finish CCC's implementation below:

SOLUTION: Implemented inline below:

CCC(n):

If n < 0:

Return infinity

Else, If n = 0:

Return __0__

Else, n > 0:

Return the __minimum__ of these possibilities:

__CCC(n - 25) + 1,__

__CCC(n - 10) + 1, and__

__CCC(n - 1) + 1.__

4. CCC does not actually return an optimal solution (the change to give), only the number of coins in

an optimal solution. If we imagine allowing CCC to have two return values (e.g., returning a more

complex object than an integer), it can also return the solution. Describe how.

SOLUTION: In general, we can have our algorithm return a tuple of the quality of the solution

(in this case the number of coins is the "badness" of a solution) and the solution itself. In this

particular case, it would work well to return either a list of coins at each step, where the size of

the list is the optimal number of coins and the list elements themselves are the change used to

achieve that or to return a map like {quarters : 3, dimes : 1, pennies : 2}, which is a shorthand

for [quarter, quarter, quarter, dime, penny, penny] with the advantage that it takes asymptotically less

space to store!

5. Finish this recurrence for the runtime of CCC:

SOLUTION: Inline below. . .

T(n) = 1 for n _< 0_

T(n) = _T(n-25) + T(n-10) + T(n-1) + 1_ otherwise

You might wonder whether the +1 on the end of the recursive case representing the constant amount

of work done "at a node" in this recurrence is important. It will turn out to make no asymptotic

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


di�erence for this particular recurrence, which is dominated by its leaves, but it's di�cult to tell that

until you've done the analysis. So, we recommend including it. (If you're not sure what it represents,

look back up at the algorithm. Does it spend constant time preparing to make the recursive calls

and assembling the results of those calls?)

6. Give a disappointing Ω-bound on the runtime of CCC by following these steps:

(a) T (n) is hard to deal with because it has very di�erent-looking recursive terms. To lower-bound

it, we can make them all look the same as long as the resulting function gets smaller or

stays the same. Now, try to �ll in the lower-bound on T (n) below so the recursive terms all

match:

For the recursive case, T (n) ≥
SOLUTION: As long as T is a non-decreasing function�which is often true for algorithms�we

can say that T (n) ≥ T (n− 1) for su�ciently large n. That means that T (n− 1) ≥ T (n− 10) ≥
T (n− 25), which lets us rewrite the recursive case T (n) = T (n− 25) + T (n− 10) + T (n− 1) + 1
to T (n) ≥ 3T (n− 25) + 1.

(b) Now, draw a recurrence tree for T (n) and �gure out its number of levels, work per level, and

total work.

SOLUTION: Here's our tree:

The work in this tree forms a geometrically increasing progression. That means the work at the

leaves will dominate. (The work at any level is almost three times as much as the work at all

previous levels.)

We reach the leaves when n reaches our base case: n− i ∗ 25 = 0. Solving for i, we get i = n/25,
which makes sense, as we're going down by quarters. It will take use n/25 quarters to give the

change. (Note that we may overshoot our base case, which is �ne; we can just count one level

higher and still get a good lower-bound. Since that will be a di�erence of a factor of 3, and we're

only concerned about asymptotics, we'll just assume here that we get to 0.)

Thus, the work in the leaves is 3n/25c = (31/25)nc ≈ 1.045nc. While the base isn't much larger

than 1, that's still exponential growth. For example, for n = 500, that's already 3486784401c.
For n = 1000, the coe�cient has about 20 digits. Clearly, this scales poorly. (And, our original

algorithm is exponential with a much larger base.)

7. Why is the performance so bad? (Hint: What subproblem do you get to if you try to give change

with �ve dimes?)

SOLUTION: Consider the �rst three levels of the recursion tree for CCC(81):

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


Notice the two nodes for n = 55 (in italics). The leftmost one appears as a child of the root's left

child, but then the same value appears under the root's right child (and, although we didn't draw

enough of the tree to see it, it appears additional times in all three subtrees of the root).

In fact, if we draw out the whole tree, that one node appears 48 times in the recursion tree. (How

do we know? That's how many di�erent ways you can make the 26 cents in change that get us from

81 cents to 55 cents: 2 ways with a quarter and a penny, 28 ways with two dimes and six pennies,

17 ways with one dime and sixteen pennies, and 1 way with twenty-six pennies. Each way of making

the change is a path from the root to a node labeled 55.) So, however much that node costs, we pay

its cost 48 times.

As we get deeper in the tree, the number of repeats of subtrees grows exponentially. We're spending

essentially all our time recomputing the optimal solution to problems we've already solved!

(Even in these three levels, we can already see two other repeats, for n = 46 and n = 70.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Greedy Change
	Brother, I Can't Spare a Nickel

