
CPSC 320 2019S2: Assignment 4

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify every-

one in your group if you're making a group submission (which we encourage!).

Submit by the deadline Tuesday July 30 at 11PM. For credit, your group must make a single
submission via one group member's account, marking all other group members in that submission using
GradeScope's interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to

the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.

Scanned documents will likely work well. High-quality photographs are OK if we agree they're

legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout.

Put these in order starting each problem on a new page, ideally. If not, very clearly and prominently

indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of

your team. Please do not include names on the assignment. If you don't mind private information

being stored outside of Canada and want an extra double-check on your identity, include your student

number rather than your name.

� Include at the start of the document the statement: "All group members have read and followed

the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with

anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope

information) away, and (2) after a suitable break, my group created the assignment I am submitting

without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

1 A Recurring Dream

Give an asymptotic solution (which should be a Θ-bound) to each of the recurrences below. You may use

whatever solution method you wish (drawing out the tree, unrolling the recurrence, proof by induction,

Master Theorem, etc.), but make sure you fully justify your answer.

1. T (n) = 2T (n− 1) + c for n > 1, T (0) = 1.

2. T (n) = nT (n− 1) + c for n > 1, T (1) = 1.

3. T (n) = 4T
(
n
3

)
+ cn log n for n > 1, T (1) = 1.

4. [BONUS, WORTH 1 COURSE BONUS POINT] T (m,n) = mT (m, n2) + cn for n > 1 and

m > 0; T (m, 1) = 1.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202019S2/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

2 The Dividing Tree

Your friend proposes a divide-and-conquer approach to compute a minimum spanning tree of a weighted,

undirected, connected graph G = (V,E). The helper function

{G_1, G_2} = subgraphs(G)

takes a graph G = (V,E) and partitions the vertices into two graphs G1 = (V1, E1) and G2 = (V2, E2) such
that G1 and G2 are both connected and |V1| and |V2| di�er by at most 1. If (and only if) such a partitioning

is not possible, one or both of the graphs G1 and G2 will be disconnected.

DC_MST(G = (V, E)):

\\ Base cases:

if |E| = 0: \\ no edges

return NONE

if |E| = 1: \\ 1 edge

return E

{G_1, G_2} = subgraphs(G)

MST_1 = DC_MST(G_1)

MST_2 = DC_MST(G_2)

let e = the minimum-weight edge connecting G_1 and G_2

return [MST_1, e, MST_2]

We'll start by analyzing the runtime of this algorithm. Assume that the subgraphs function runs in

Θ(n+m) time, where n = |V | and m = |E|. For questions 1 to 4, assume we have a connected graph where

subgraphs can always generate connected G1 and G2 subgraphs.

1. The best case for this algorithm is a particular (simple and common) type of connected graph. What

type of connected graph yields the best-case runtime? VERY brie�y justify your answer.

2. What type of connected graph yields the worst-case runtime? VERY brie�y justify your answer.

3. Give and brie�y justify a good asymptotic bound on the best-case runtime of this algorithm in terms

of n.

4. Give and brie�y justify a good asymptotic bound on the worst-case runtime of this algorithm in

terms of n.

5. Does this algorithm always generate a minimum spanning tree? (You should assume the input graph

is connected, but need no longer assume that subgraphs can always generate connected G1 and G2

subgraphs.)

� If it does, provide a proof.

� If it does not, provide an example where the algorithm fails to produce an MST and explain it

by indicating the MST and clearly explaining the answer produced by the algorithm. In cases

where there are multiple possible return values for the subgraphs function, you will need to

determine and state what the values are.

Subgraphs v2.0

Now suppose that we have modi�ed our subgraphs function so that when it isn't possible to partition G
into two connected subgraphs of equal size, subgraphs instead returns two connected graphs G1 and G2,

where the absolute di�erence between |V1| and |V2| is minimized.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6. Does this version of the algorithm always generate a minimum spanning tree (again, assuming a

connected input graph)?

� If it does, provide a proof.

� If it does not, provide an example where the algorithm fails to produce an MST and explain it

by indicating the MST and clearly explaining the answer produced by the algorithm. In cases

where there are multiple possible return values for the subgraphs function, you will need to

determine and state what the values are.

3 Conquering the Auction Market

You own an online sales company called DCAuctions.com that sells goods both on auction and on a �xed-

price basis. You want to use historical auction data to investigate your �xed price choices.

Over n minutes, you have a good's price in each minute of the auction. You want to �nd the largest

price-over-time stretch in your data. That is, given an array A of n price points, you want to �nd the

largest possible value of

f(i, d) = d ·min(A[i], A[i + 1], . . . , A[i + d− 1]),

where i is the index of the left end of a stretch of minutes, d is the duration (number of minutes) of the

stretch, and the function f computes the duration times the minimum price over that period. (Prices are

positive, d ≥ 0, and for all values of i, f(i, 0) = 0 and f(i, 1) = A[i].)
For example, the best stretch is underlined in the following price array: [8, 2, 9, 5, 6, 5, 3, 1]. Using

1-based indexing, the value for this optimal stretch starting at index 3 and running for 4 minutes is

f(3, 4) = 4 ·min(9, 5, 6, 5) = 4 · 5 = 20.

1. Give a brute force algorithm to solve this problem. Your algorithm must run in polynomial time.

2. Give and brie�y justify a good asymptotic bound on the runtime of your algorithm.

D + C = Pro�t

In this part, you will give a divide-and-conquer algorithm that is more e�cient than the brute force approach.

3. Suppose the minimum element in A is A[k] = 4, and suppose that A has length n. What's the best

price stretch for all intervals that include A[k]? Brie�y justify your answer.

4. Using the insight from the previous question, give an e�cient algorithm to �nd the best price stretch.

5. Give and brie�y justify a good asymptotic bound on the worst-case runtime of your algorithm.

6. Give and brie�y justify a good asymptotic bound on the average-case runtime of your algorithm.

7. [BONUS, WORTH 1 COURSE BONUS POINT] A segment tree is a data structure that lets

you obtain the maximum value of an interval A[i] to A[j], for 1 ≤ i ≤ j ≤ n, in O(log n) time, where

n is the length of A. The segment tree takes O(n) time to build. Describe how you could modify

your algorithm to obtain a better worst-case runtime than you computed in question 3.

4 Tiles and Tribulations

NOTE: FRIDAY'S TUTORIAL QUIZ WILL BE BASED ON THIS QUESTION.
The quiz will ask di�erent questions than the ones below, but will provide a substantial
hint to help with the assignment questions. Before Friday, we recommend you prioritize the

other questions on this assignment (because this question will probably be easier if you wait

until after we've released the hint on the quiz).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

You're given a grid of size n × n, where n = 2k for some k ≥ 1, with one cell missing. Your job is to

cover the board with L-tiles. An L-tile is three squares that form an L shape (i.e., a 2× 2 square with one

square missing). Below is a 4× 4 board, with a missing cell at position (2, 3) (using 1-based indexing from

bottom left).

The L-tiles:

� Must cover every white square of the board.

� Must NOT cover the single black square on the board.

� Are not allowed to overlap.

1. Prove that, for any 2k × 2k board with an arbitrary missing cell, we can come up with a way to cover

the board with L-tiles.

2. Design a divide-and-conquer algorithm to place L-tiles to cover a 2k × 2k board with a single missing

cell.

3. Give and brie�y justify a good asymptotic bound on the runtime of your algorithm in terms of n (the

dimension of the board).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	They See Me (Un)Rollin', They Hatin'
	The Dividing Tree
	Conquering the Auction Market
	Tiles and Tribulations

