
CPSC 320 Handouts: Quick Notes on NP-completeness

Throughout this unit, we deal with decision problems: these are algorithmic problems with a YES or
NO answer. The problems typically have the form: does there exist a solution to this problem that satis�es

(some properties...).

Complexity classes

� P: problems that are solvable in polynomial time (i.e., we can come up with an algorithm that
correctly solves any instance of the problem in O(nc) time, for some constant c).

� Example of a problem in P: given a graph and two nodes u and v, does there exist a path between
u and v of length at most k?

� NP: problems where a candidate solution (called a certi�cate) can be veri�ed in polynomial time.

� Example: SAT. We look for a set of truth assignments that will make all clauses evaluate to
TRUE. So, our �certi�cate� is the set of truth assignments, and for a given certi�cate, we can
verify whether it actually gives a YES answer to the problem (by satisfying all the clauses) in
polynomial time.

� NP-hard: all problems that are at least as hard to solve as the hardest problems in NP. So, some
NP-hard problems are in NP, but some are not (they are harder than all problems in NP). As far as
we know, none of these problems can be solved in polynomial time.

� NP-complete: problems that are in NP and in NP-hard. That means we think we can't solve the
problem in polynomial time (because the problem is NP-hard), but we can check whether a particular
candidate solution works in polynomial time (because the problem is in NP).

� Examples: SAT, 3-SAT, independent set, vertex cover, traveling salesperson, subset sum, and
many others...

Figure 1: Image by Behnam Esfahbod, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3532181
(retrieved 22 November, 2017).



Proving that a problem is in NP

To prove that a problem is in NP, you have to:

1. De�ne a certi�cate for the problem.

2. Describe how the certi�cate can be veri�ed in polynomial time.

A certi�cate is a proof of a YES answer. We said earlier that these problems are usually existential � i.e.,
�Does there exist a solution that satis�es X." Your certi�cate should be whatever an actual solution looks
like.

Example: the vertex cover problem asks: given a graph, is there a set of no more than k vertices such
that every edge in the graph is adjacent to at least one of these vertices?

To prove that the problem is in NP:

� Step 1 : de�ne the certi�cate. In this problem, we're looking for a set of vertices that form a vertex
cover. So, our certi�cate will be a set of the vertices in the graph.

� Step 2 : given a certi�cate, we need to determine, in polynomial time, whether it actually solves our
problem � in other words, determine whether a set of vertices is actually a vertex cover of size less
than or equal to k. Here are our steps:

� Check whether the size of the set of vertices is actually less than or equal to k (either constant
or linear time in the number of vertices).

� Now, check whether these vertices are actually a cover. We can do this by iterating over all
edges in the graph and checking whether each edge is adjacent to at least one of the vertices in
the vertex cover (linear time in the number of edges in the graph).

In Step 1, we de�ned the certi�cate for the problem, and in Step 2 we showed that a certi�cate can be
veri�ed in polynomial time. Therefore, vertex cover is in NP.

Proving that a problem is in NP-hard

Suppose we have a new problem called B, which we want to show is NP-hard. We prove this with a
polynomial-time reduction from some problem A that we know to be NP-hard :

We imagine we have a way to solve our new unknown problem, and then use that to solve some NP-
hard problem. Intuitively, this means that a solver for B is at least as powerful as a solver for A (since we
can use our black box for B to solve A), so B is at least as hard. More formally, if we could solve B in
polynomial time, then our reduction would give us an algorithm to solve A in polynomial time; therefore,



if A is NP-hard and (we think) not solvable in polynomial time, then B can't be solved in polynomial time,
either.

Some important things to remember:

� Remember to reduce in the correct direction! You reduce from a hard problem to a new,

unknown problem.

� Both algorithms in your reduction (converting the instance, and converting the solution) must run in
polynomial time! Otherwise, you could solve B in polynomial time and still not have a polynomial
time algorithm for A, which means you haven't actually proven anything about B.

Proving that a problem is in NP-complete

Just prove that it's in NP, and prove that it's in NP-hard!

Proving correctness of your NP-hardness reduction

For the purposes of this class, if we ask you to give a reduction to prove that a problem is NP-hard, you
do not need to prove correctness of your reduction unless we speci�cally ask for it. But, should you need
to give such a proof, here's a high-level sketch of what you can do.

In nearly all your NP-hardness reductions, your second algorithm will be: return YES to problem A if
and only if the answer to B is YES. In this case, any proof of correctness has to establish: the answer to

reduced problem B is YES if and only if the answer to the original problem A is YES. This requires proving
that YES to A implies YES to B, and proving that NO to A implies NO to B.

But, it's hard to reason about NO instances. So instead, we'll generally prove that YES to A implies
YES to B, and that YES to B implies YES to A. Why is that easier? It's because when we deal with YES
instances, we can use the handy notion of certi�cates that we de�ned earlier!

These are the steps you'll generally want to take to prove correctness of your reduction:

1. De�ne the certi�cates for A and B.

2. Prove that YES to A implies YES to B. The most straightforward way to do this: assuming you have
a working certi�cate (i.e., a true YES solution) for A, describe how you would construct the certi�cate
(i.e., the actual YES solution) for the reduced instance of problem B.

3. Prove that YES to B implies YES to A. Proceed as before: assuming you have a working certi�cate
for your reduction's instance of B, describe how to construct the certi�cate for the original instance
of A.


