CPSC 320 Notes: What’s in a Reduction?

To reduce a problem A to another problem B, we typically proceed as follows: give one algorithm that
takes a (legal) instance a of A and converts it into a legal instance b of B and a second algorithm that takes
the corresponding solution s, to b and transforms it into a solution s, to a. (The second algorithm can use
whatever bookkeeping information it needs from the first.)

We’ve used reductions to solve new problems based on problems we could already solve. For example,
reducing hospital /intern matching to stable marriage.

But. .. there’s another way to use reductions. A more sinister WayF_-]

1 Boolean Satisfiability

Boolean satisfiability (SAT) is—as far as Computer Scientists know—a hard problem. In the version of
SAT we discuss here, you're given a propositional logic expression like: (z1 VT3V x3 V x4) A (z5) A (T1) A
(x2 VT3V T5) A (T2 V x3) and must determine whether any assignment of truth values to variables (the z;’s)
makes the expression true.

Here’s a formal definition of an instance of SAT. A literal is an integer i or —i (for ¢ > 0), meaning z;
or its negation T;, respectively. A clause is a number k > 0 followed by k literals, meaning the result of
"ORing together" k variables or their negations. An instance of SAT is a number ¢ followed by ¢ clauses.
(For convenience, we’ll insist on using the variables 1, z2,...x, for some n, without skipping any.) A
solution to SAT is simply YES (there is an assignment that makes the expression true) or NO (there isn’t).

1. Finish the input to SAT for the instance above:

5 // 5 clauses
41 -234 // a clause with 4 literals: x1, not x2, x3, or x4
15 // a clause with 1 literal: x5

2. Is the example SAT instance above satisfiable? If not, explain why not. If so, prove it by giving an
assignment that makes the statement true.

Well, OK. Just another way.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Give the trivial instance(s) of SATEI

4. Build two small but non-trivial instances of SAT and check whether they’re satisfiable.

5. If I gave an assignment of truth values to the variables and said it satisfies the expression, how long
would it take (in terms of the length of the input, i.e., the total number of literals in all the clauses)
to test whether my statement is true?

6. A brute force algorithm could make a list of the variables x1, ..., z, in the problem, try every assign-
ment of truth values to these variables, and return YES if any satisfies the expression or NO otherwise.
Asymptotically, how many truth assignments might this algorithm try (in terms of n)?

2The conjunction ("and") of zero conjuncts is true. The disjunction ("or") of zero disjuncts is false. Why? These are the
identity elements for "and" and "or".

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 3-SAT and SAT

The 3-SAT problem is just like SAT, except every clause must be exactly of length 3. Let’s build a
reduction from SAT to 3-SAT. (So, we're solving SAT in terms of 3-SAT.)

1. If you really wanted a clause like (z5) in 3-SAT, how could you represent it? Hint: one variable can
appear multiple times in a clause. Challenge: How can you do it if one variable is not allowed to
appear multiple times?

2. If you really wanted a clause like (z1 VT3V 23V 24) in 3-SAT, how could you represent it? Note that
the 3-SAT instance you create must be satisfiable if and only if the original SAT instance was. Hint:
Manufacture a new variable and then use it to help break this one clause into two.

3. Extend your 4-literal clause plan above to a 5-literal clause like (x1 VT2 V 23V 24 V T5).

4. Extend your 5-literal clause plan to a 100-literal clause. How could you represent such a clause in
3-SAT?

5. Give a reduction from SAT to 3-SAT.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 What does a reduction tell us?

Considering a reduction to be two algorithms that "connect" one problem to another, as in this diagram:

solnto | Alg | sol'n to
instance’| #2 .
of B Instance
of A

instance | Alg instance
of A G

(Black Box)
Solver for B

Solver for A
(via reduction from A to B)

1. IMAGINARY SCENARIO #1: Say our reduction’s two algorithms take O(f(n)) time and we
have a solution to the underlying problem problem that also takes O(f(n)) time. What do we know
about the original problem?

2. IMAGINARY SCENARIO #2: Say our reduction’s two algorithms take O(g(n)) time and we
know that there is no solution to the original problem that runs in O(g(n)) time. What do we know
about the underlying problem? Why?

3. NOT-SO-IMAGINARY SCENARIO #3: Say that we know (which we do) that if SAT can
be solved in polynomial time, then any problem in the large set called "NP" can also be solved in
polynomial time. What does our redution from SAT to 3-SAT tell us? Why?

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

4 What does NP-completeness tell us?

Most Computer Scientists think "P = NP". If that’s true, then there is no correct,
deterministic algorithm for any NP-complete problem that runs in polynomial timeE]
Specifically: if a problem is NP-complete, it’s hopeless to write an algorithm that
scales to arbitrarily large problem sizes and definitely, precisely solves every possible
instance of those sizes correctly for exactly that problem.

1. Tmagine you visit the largest, seated, outdoor, bronze Buddha in the world.
It’s pretty impressive. . . but presumably there’s a larger standing (reclining?),
outdoor, bronze Buddha; a larger seated, indoor, bronze Buddha; and a Figure 1: By Béria L.
larger, seated, outdoor Buddha in some other material. Rodriguez, CC BY-SA

List as many ways as you can think of to "get around" an NP-complete prob- 3-0
lem.

2. Go solve a big NP-complete problem in your browser, on your phone, and laugh
in the face of NP-completeness: http://www.msoos.org/2013/09/minisat-in-your-browser/.

Note, however: There really are an enormous number of NP-complete prob-
lems that are HARD and important to solve, including many interesting
instances of SAT. There are also many interesting problems that are either
definitely or probably (if P # NP or similar conditions) harder than NP, for
example the problem of "Al Planning".

3. A huge number of problems are solved using SAT solvers because "SAT is an
easy target for reductions”.

Explain that quote.

3Technical note: that doesn’t mean the algorithm has to run in exponential time. There are options in between, like V™,

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

https://en.wikipedia.org/wiki/Tian_Tan_Buddha
http://www.msoos.org/2013/09/minisat-in-your-browser/
http://en.wikipedia.org/wiki/Automated_planning_and_scheduling
http://creativecommons.org/licenses/by/4.0/

5 Challenge

1. Why wouldn’t our "trick" for reducing SAT to 3-SAT work in "2-SAT"?
2. Give a polynomial-time algorithm to solve 2-SAT.

3. Find a good bound on the length of the 3-SAT instance created by our SAT to 3-SAT reduction in
terms of the length of the initial SAT instance. (We take "length" to be 1+ > "7 (1 + k;).)

Fun Communications of the ACM reference with discussion of industrial and research applications of
SAT: http://goo.gl/KQoKFd.

Solving NP-complete problems is not just for industry and research, it’s for art as well (Travelling
Salesperson Problem): http://www.cgl.uwaterloo.ca/csk/projects/tsp/.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://goo.gl/KQoKFd
http://www.cgl.uwaterloo.ca/csk/projects/tsp/
http://creativecommons.org/licenses/by/4.0/

	Boolean Satisfiability
	3-SAT and SAT
	What does a reduction tell us?
	What does NP-completeness tell us?
	Challenge

