CPSC 320 Notes, Playing with Graphs

Today we practice reasoning about graphs by playing with two new terms. These terms/concepts are
useful in themselves but not tremendously so; they’re mainly a tool to spur our graph reasoning.

1 Terms

An articulation point in an undirected graph is a vertex whose removal increases the number of connected
components in the graph.

The diameter of an undirected, unweighted graph is the largest possible value of the following quantity:
the smallest number of edges on any path between two nodes. In other words, it’s the largest number of
steps required to get between two nodes in the graph.

2 Play

For each of the following graphs:

1.

2.

0'0

Find all the articulation points (if any) in the graph.

Give the diameter of the graph.

. Draw out the rooted tree generated by a breadth-first search of the graph from node a (draw dashed

lines for edges that aren’t part of the tree).

. Draw out the rooted tree generated by a depth-first search of the graph from node a (with the same

use for dashed lines).
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3 Diameter Algorithm

Design an algorithm to find the diameter of an unweighted, undirected, connected graph. For short,
we’ll call this problem DIAM.

3.1 Trivial and Small Instances

1. Write down all the trivial instances of DIAM.

2. Write down one more small instance of DIAM. (Smaller than the ones in Section 2 but non-trivial.)
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3.2

1.

3.3

3.4

Represent the Problem

An instance of this problem is an unweighted, undirected graph. Use names to express what such a
graph looks like as input.

. Go back up and rewrite one trivial and one small instance using these names.

. Our sketched representation of graphs is visually easy to interpret. But always keep thinking about

other representations as you solve a problem. (E.g., for n vertices, you might draw the adjacency
matrix as an n X n grid with X’s where there is an edge.)

. Our input graph has some constraints. Using the names above, express the constraints that (i) a node

may not have an edge to itself, and (ii) an edge between two nodes may only appear once.

Represent the Solution

. What are the quantities that matter in the solution to the problem? Give them short, usable names.

(You may find yourself returning to this step later!)

. Describe using these quantities makes a solution valid and good:

. Go back up to your new trivial and small instances and write out one or more valid solutions to each

using these names.

. Go back up to your drawn representations of instances and draw at least one more valid solution.

Similar Problems

Think of related algorithms and/or problems.
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3.5 Brute Force?

The solution to the problem is an integer, the diameter of the graph. That’s not very useful for planning
a brute force approach. A closely related quantity is "the two nodes that define the diameter by being
farthest apart". (We often make this kind of shift in focus when we design a brute force algorithm.)

For this part, consider the problem "which two nodes define the diameter by being farthest apart?"

1. Sketch an algorithm to produce everything with the "form" of a solution.

2. Choose an appropriate variable (or variables!) to represent the "size" of an instance.

3. Exactly or asymptotically, how many such "solution forms" are there?

4. You will want to keep track of the best candidate solution you’ve found so far as you work through
brute force. What will characterize how good a possible solution is?

5. Given a possible solution, how can you determine how good it is?

6. Will brute force be sufficient for this problem for the domains we're interested in? (Since we didn’t
give you a domain, pick one!)
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3.6 Promising Approach

You can "tweak" the naive brute force approach to make it better. Describe—in as much detail as you
can—a promising "tweak" to the approach that improves its asymptotic performance.

3.7 Challenge Your Approach

1. Carefully run your algorithm on your instances above. (Don’t skip steps or make assumptions;
you're debugging!) Analyse its correctness and performance on these instances:

2. Design an instance that specifically challenges the correctness (or performance) of your algorithm:

3.8 Repeat!

Hopefully, we’ve already bounced back and forth between these steps in today’s worksheet! You usually
will have to. Especially repeat the steps where you generate instances and challenge your approach(es).
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4 Challenge Problem

1. Design an algorithm to find articulation points in an undirected graph. Hint: think about how the
dashed edges in a DFS relate to articulation points. It may be easiest to start with the root, which
is a simpler special case than the other nodes.

2. The book described the "Independent Set" problem as one where we do not know a polynomial-time
solution. If we had a linear time algorithm for finding articulation points, describe how it could help
(and how much it could help) for some graphs.

3. Here’s a promising approach to finding diameters: Pick a node arbitrarily. Run BFS from it. Find
the node farthest from it in the BFS tree, breaking ties arbitrarily. (Goal: this node is an "extreme"
node that will define the diameter.) BFS from that node. Return as the diameter the height of the
new BFS tree.

This algorithm is incorrect. Generate a counterexample to its correctness.
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