
NodeJS

Stephanie Mah

First things

Run npm install -g express-generator

Optional - install Postman

Big Picture

Client vs Server

Client Server Database

Client Vs Server (310 throwback edition)
Model View Controller (MVC) Pattern

Controller
(Redux)

View
(React)

Controller
(Express)

Model

Client vs Server
Client

● Your code runs on devices you don’t

control

● Eg. JS running in a web browser

Server

● Your code runs on devices you do

control

● Eg. JS running on a NodeJS engine on a

computer that the app developer

configures and maintains

Implications of Client vs Server
Client

● Your code is easy for

users/competitors to read

● Depending on the platform, your
code is easy for users to modify

● Data storage can be manipulated

● Users can keep running old versions of

your code

● Performance unknown

Server

● Your code is private (if you want it to

be)

● Your users can’t change what your
code is doing

● Users can’t modify data unless you
want them to (as long as you follow
good security practices)

● You control when your code is

updated

● You control CPU, memory, bandwidth

etc.

NodeJS

NodeJS
● Javascript on your server

● The “node” part refers to the javascript runtime that is built off of Google Chrome’s v8

javascript engine

● Runs in a asynchronous event looped environment - Operations that wait on slow

resources yield the single thread to other events and wait for a callback from the slow

operation

Simple NodeJS Server in 30 seconds
const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

 res.end('Hello World');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

Express

Express
● “Fast, unopinionated, minimalist web framework for Node.js”

● Express takes repetitive low level code (eg. parsing the request or formatting the

response) and gives you a higher level API to use

● Faster to code in and has more features than NodeJS.

Express App Setup
cd <react-app-directory>

npm install express-generator -g

Npx express-generator <express-app-name>

cd <express-app-name>

npm install

npm start

Now check that it’s running :)

Once you can see that it’s running, stop the server (Ctrl-C). We’ll come back to it in a bit.

APIs

REST
Representational State Transfer
Architectural style that defines a set of constraints for the access and

manipulation of textual data on the internet.

Idempotence
Property of an operation such that repeating the operation

produces the same result.

HTTP Methods

Method CRUD Idempotent Purpose

GET Read Yes Read 1+ resources

POST Create No Create a new resource

PUT Create/Update Yes Create/Replace resource with given id

PATCH Update No Modify a resource with given id

DELETE Delete Yes Delete resource with given id

POST vs PUT vs PATCH

POST

● Will always create a new

resource

● NOT idempotent - POSTing

multiple times with the

same request body will

result in multiple resources

being created

PUT

● Will replace whole

resource or create a new

one if none exist with the

given ID

● Idempotent - PUTting

multiple times with the

same request body will

always result in the same

resource at the given ID

PATCH

● Will replace part of a

resource with the given ID

● Idempotent - PATCHing

multiple times

Anatomy of a Network Request
Request URL - the address of the resource you’re requesting

Request Method - GET/POST/PUT/PATCH/DELETE

Request Headers - unrelated to the message content - typically used to provide context to the

request (ie. Authorization) but can also allow for conditional requests (ie.

If-Modified-Since)

Request Body - the message content for PUT/POST/PATCH requests; commonly JSON object or

array

Routes
● A route is the request URL of the API you intend to hit

● Grouped by common resources (an entity in your system, usually as it corresponds to a

collection in your DB)

● May include the id of a resource, a MUST for certain operations

● Eg. /users or /users/:userId

Example operations for /users
GET - return a list of users

POST - add a new user

PUT - typically not supported - remember: PUT will create/replace resource with given id

PATCH - typically not supported - remember: PATCH will modify a resource with given id

DELETE - typically not supported - remember: DELETE will delete resource with given id

Sage advice from someone who TA’d last year - Do not use POST for what should
be a DELETE call. Configure your routes to accept an ID, don’t just pass it in a
POST body because you can. PLEASE.

Example operations for /users/:userId
GET - return a user record with id = userId

POST - typically not supported - remember: POST will create a new resource; use PUT
instead

PUT - add or replace the user record with id = userId

PATCH - update part of the user record with id = userId

DELETE - remove the user record with id = userId

Let’s configure a route

Configuring Express
Change the port so it doesn’t conflict with your react port:

1. Go to your new express app > bin > www. (Does the code look a bit similar?)

2. On line 15, change the ‘3000’ to ‘9000’

If you run your express server again, you should be able to see it working properly on

localhost:9000 now.

Configuring the /user route
As you can see, express-generator has already started a users route for you at routes > users.js

Here you can configure your /user routes. Here are a couple examples.

router.get('/:userId', function(req, res, next) {

 const foundUser = users.find(user => user.id === req.params.userId);

 res.setHeader('Content-Type', 'application/json');

 res.send(foundUser);

});

router.post('/', function(req, res, next) {

 const newUser = req.body;

 newUser.id = uuid();

 users.push(newUser);

 res.setHeader('Content-Type', 'application/json');

 res.send(newUser);

});

Oh no! CORS!
CORS (Cross Origin Resource Sharing) - a mechanism that allows restricted resources on a web

page to be requested from another domain outside the domain from which the first resource

was served

In your express app folder, run npm install --save cors

Then import it in your app.js file

var cors = require('cors');

And use it

app.use(cors());

Advanced backend
development topics

Scalability & Performance
● How can you continue to quickly

handle requests when you go
from 100 requests to 100k?

● How do you handle unpredictable
and spiky loads?

● What is the average response
time for 5 requests/second on a
single endpoint? What about 100?
100,000? What is the failure rate?

Observability
● When you process millions of

requests or events every day how
do you keep track of what’s going
on in your system?

● If you have a bug that occurs only
once every 100k requests how
can you figure it out?

BREAK TIME

About me

Background
● Started Electrical Engineering in 2009 at UBC

○ Hated it. The math was too hard. :(

○ Left after 2.5 years. No, I really wasn’t close to graduating. :/

● Dropped out to do a Bachelor of Fashion Design at Kwantlen

○ The month I spent preparing for my portfolio review was one of the most stressful months of my
life.

○ Going to fashion school was a lot of all-nighters, panic attack and crying. Decided that kind of life
wasn’t for me and quit 2 weeks before starting second year.

○ I can draft my own clothes though :D

Background
● Finally got a Bachelor of Commerce at Sauder

○ Optioned in Finance initially, but added on Business Technology Management too because I could.

○ Worked at a start-up private equity firm FT/PT for 2 years or so

● Decided that the finance life wasn’t for me and enrolled in the B.CS program at UBC

○ Graduated on Wednesday!

○ Did my co-op at PAI Health where an 8 month co-op term turned into 15 months turned into a FT
contract position.

Advice

Things to ask in an interview
● Ratio of developers to QAs

○ Useful for estimating the workload of a QA, how much of the testing effort developers are
responsible for, etc.

● Makeup of the developer team (senior developers ratio, etc.)

○ Having a solid base of people to ask advice from is crucial to how much you can learn; if your team
is made up of other co-ops or interns, you may not learn how to write good code.

● Code review/pair programming practices

○ If no one ever looks at your code, you’ll never get feedback on how to improve or learn a quicker or
better way of doing things

● Testing strategy? Automated testing? TDD?

○ As much as many of us hate writing tests, they are critical for quality and robustness of the code
base. Similar to above, it’s good to know what you’re walking into as a developer or a QA

Things I rarely do
● Write code outside of work

● Work more than 8 hours a day - but sometimes I’m on a roll and I’ll keep going for a few

more

● Network

● Do Leetcode/what-have-you

● Do Hackathons

General Co-op Advice
● You’ll always learn something, so don’t feel bad for prioritizing comfort (a job looking for

skills you already possess) over stretching yourself (a job with an entirely new stack) -

there will be opportunities to stretch yourself at that comfy job too!

● Pick the hard project - but don’t be afraid to ask for A LOT of help with it if you need to

● Ask your coworkers about how to improve you code - it’s easy to get away with subpar

code, but it won’t do you any favours

● Start-ups have their benefits and so do large companies, but they also have their

drawbacks too

○ You may do and touch more things at a startup, but may lack code quality and mentors

○ You can learn a lot from a well-established code base and process-wise, but your projects may be
less exciting or flexible

● You’re a co-op. Nobody is expecting you to be batting 100, 24 hours a day out of the gate.

How to write a kickass coverletter in 5 parts
1. Why I think your company is THE BEST THING SINCE SLICED BREAD and why I would

die to work there. [Look at the company’s website - what do they think is the most

amazing thing about what they’re doing? Talk to this point.]

2. Slightly personalized but generic reason for why I would be a great fit at your company.

Don’t believe me? Here are some concrete examples:

3. One verbatim requirement for this position: a concrete example of how I did that

4. Another requirement for this position : a different concrete example of how I did that

5. I believe that my unique experience with XXX gives me YYY skills beyond that of other

students. As a company that values, ZZZ, I hope you’ll consider me an asset to your team.

Blah blah, look forward to hearing from you, blah blah.

Once you’ve done this once or twice and have enough examples for part 3 and 4, you’ll really

only need to write part 1. BOOM.

Real Talk

Stephanie’s heartfelt advice
● If you have a meandering past like mine, own it. An ex-boss of mine told me that I talked

about my past like it was series of mistakes. Don’t be like me. My past was not a series of

mistakes, but rather a testament to how I refused to settle for a job/degree that I wasn’t

passionate about.

● Get a post-grad job offer that’s perfect, except for salary? Ask for more. Just do it. Thank

them for the offer, but tell them you were looking for something closer to the $$ range

and ask if they can do anything for you. Be realistic though, I personally wouldn’t go higher

than 20-25% higher than their initial offer. The worst that can happen is they say no and

counter with their original offer; they likely won’t take the offer away completely because

they did want you to begin with and if they do, their loss, not yours. You can always ask for

a higher title too or in lieu of higher pay, but again, be realistic.

● Be humble and don’t hide your mistakes. It’s not easy to admit your mistakes, but you’ll

gain more respect from your peers if you do. On the flipside, imposter syndrome is real,

y’all - trust yourself! Run your implementation plan by coworker; they’ll either be

impressed, or help you improve it. I believe in you!

