Categories
Analysis Emerging

Weeks Twelve and Thirteen: Information Visualization, Course Analysis and Course Sign-Off

Information Visualization

Information visualization helps students understand processes and the meaning of data through animations, simulations and modeling. There are many existing and easily accessible science and math based visualization tools available including: Model-It, NetLogo, Geometer’s Sketchpad, WiseWeb, Illuminations applets and PHET.

Running a simulation is akin to messing about as described by researchers in education such as Finkelstein et al (2005). These authors describe messing about as “This idea of scientific play is the methodical investigation of the constraints and opportunities of a system” p5. They also state that messing about can help students organize their knowledge and align it with scientific models through this play.

Teachers and instructors could use one of the instructional frameworks discussed in this course (Anchored Instruction (AI), Scaffolded Knowledge Integration (SKI), Learning for Use (LFU) or Technology – Generation, Evaluation, Modification (T-GEM)) in combination with an information visualization tool to develop powerful lesson plans to help students conquer a challenging concept or deal with misconceptions. Even a basic tool such as Lemonade Stand teaches students that a simple business has many inputs to consider and apply to be successful.

 

Course Analysis

The pace of the course was fast; the instructor put the “pedal to the metal” on January 2, 2013 and did not let up throughout the course. Now it is early April and time to reflect on what I have learned and how I can apply it to my current role as the Curriculum Coordinator for the School of Business at SAIT Polytechnic.

Overall this was a tough course for me as it had me outside of my comfort zone many times, primarily as I am not a science or mathematics teacher or instructor. “Outside of my comfort zone” is a way of saying that I spent a lot of time in my “Zone of Proximal Development”; this in turn resulted in a lot of hard work and some great learning for me.

Here are some of the themes that I take away from the course

  • Deal with misconceptions
  • Encourage engagement with technology
  • Refer to theoretical frameworks for guidance when using technology
  • Embrace emerging genres of teaching, learning and technologies
  • Use technology where appropriate

My complete course analysis is posted in the Analysis section of this blog.

 

Course and Program Sign Off

This concludes my participation in this course; all postings and assignments are complete. This e-folio captures my learning throughout the course as the final Legacy in Learning assignment for this course.

It also marks my completion of the MET program; course 10 of 10 completed over the last 43 months. I can now return my life to normal, whatever normal is now. I feel that I have achieved the broad objectives that I set out to accomplish that I established over four years ago:

  • There is now a need for me to crystallize my experience in curriculum development and my role as a Curriculum Coordinator with a formal education in learning technologies to enhance my role and to provide learning and technology leadership to faculty and staff in my school and across SAIT.
  • The proposed Master’s degree will provide me with knowledge and skills, based on current best practices, and emerging trends in learning and technology that will give me the confidence to provide guidance to faculty and Academic Chairs and leadership to the School of Business in the development of proposed new programs and the redevelopment of existing programs.

My program epilogue “To here, and from here” describing my overall MET learning is posted at the end of my learning analysis component for this course.

References:

Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N.  (2005).  When learning about the real world is better done virtually:  A study of substituting computer simulations for laboratory equipment.  Physics Education Research,1(1), 1-8.  Retrieved April 02, 2012, from:http://phet.colorado.edu/web-pages/research.html

 

Categories
Framing

Early lessons from this course.

The first 10 days of the course moved very quickly from introductions to our early experiences with digital technology, conceptional challenges, unpacking assumptions and finally examining video cases to help flesh out our perspectives of what and how educational technology can be used in math and science classrooms, and any classroom.  I posted my thoughts on each of these topics to the course discussion board and I further benefited by reading my colleagues postings, their comments to my postings and my comments to their postings. More details on my postings for these subjects are presented in the “Framing” page of this blog.

Introductions:

In the introductions, I discovered that I may be the lone post-secondary administrator voice in the course (hopefully not a lone voice in the wilderness!) as the majority of my colleagues are K-12 teachers. This is familiar territory for me in the MET program, and I will present a totally different perspective to my colleagues throughout the course. I trust they will listen and understand this view as I always look at a students’ journey from K through 12 to post-secondary to graduation and employment.

Auto e-ography:

My early experiences with digital technology go back to the early 1970’s when I was given an electronic calculator; a real game changer compared to my older brother who made it through high school with a slide rule. I experimented with many different technologies over the years as they appeared and they have all been integrated into our everyday lives to the point that we don’t think of them as technology, but as tools and widgets. This was a great exercise to spend some time thinking about these early experiences and to present them as an auto e-ography

Conceptional Challenges:

Conceptional challenges are something that I had never thought of previously as being important. But as I went through the course resources, read the postings from my colleagues and started to reflect on my own situation, I realized that yes there are a lot of challenges out there that people have related to math and science that are important to identify and to talk about.  For me as a Geographer, I soon realized the conceptional challenges around maps and how they are used to portray the round earth were important to identify.

Unpacking Assumptions:

In the unpacking assumptions exercise, I was able to quickly identify a few examples based on my post-secondary experience to illustrate what I think are good uses of technology in the math and science classroom. My initial thoughts are to not get caught up in the WOW factor and use it just because we can and feel that we need to use technology just because we are teaching in a math, science or technology course or program. I like to recommend to instructors to consider using technology in situations where they struggle to get difficult concepts across to students. Also from a practical post-secondary perspective, to consider using technologies that are applicable and relevant that the jobs graduates will be moving into.

Video Case Analysis:

Clickers and calculators are a couple of basic technologies that I looked at in two of the cases. Both teachers/instructors were very confident in their use of these technologies and to the benefits to the students. Both of these technologies helped tremendously with the engagement of the students and the teacher/instructor in the classroom. I felt these tools helped challenge conceptions that math is not relevant and lecture format is boring and not engaging.

Onto week three and at home interviews.

Spam prevention powered by Akismet