
How compilers and tools differ for embedded systems

Michael Wolfe
STMicroelectronics, Inc.

c©2005, All rights reserved.

The study of compilers includes almost all of classical com-
puter science: programming languages, formal languages, al-
gorithms, data structures, instruction set design, computer
architecture, implementation, everything almost down to
logic design. Parts of the compiler include parsing, flow
analysis, code improvements, parallelism detection at the
instruction level as well as for multiple processors, resource
allocation (registers, functional units), scheduling, and so
on. Associated tools include assemblers, linkers, disassem-
blers, profilers, optimized libraries, and more. All of these
have a long and distinguished history, actively developed
over the past half century.

So, why is it so hard to create a satisfactory programming
environment for today’s embedded systems? Why and how
must such an environment be different from those in use on
general purpose computer systems?

I’m going to discuss this problem from the top down,
starting at the marketplace for programming environments
(read: compilers) for embedded systems versus the market
in the general purpose workstation or cluster world. I work
for STMicroelectronics’ SST Portland Lab, which until the
year 2000 was The Portland Group (PGI), an independent
developer of very high performance C and Fortran compilers.
Since 2000, we have developed highly optimizing compilers
for embedded processors while continuing to grow The Port-
land Group business as part of our Lab operations. That
business includes a large and growing customer base in the
Intel and AMD x86 Linux market. That market includes
multiple competing compiler vendors, which is an unusual
situation compared to the traditional RISC/UNIX worksta-
tion and server market This situation developed largely be-
cause the primary CPU vendor, Intel, did not develop and
market a compiler solution until the turn of the century.
Now, of course, Intel has a highly visible compiler group,
targeting the Pentium family, XScale embedded systems,
and the Itanium.

At the SST Portland Lab, our continuing work in the
general-purpose and high-performance computing markets
in addition to work on compilers for ST embedded systems,
in particular for the ST100 family of DSPs, gives us an in-
teresting perspective. We’re not alone in this regard. Some
independent compiler companies can say the same, as well
as, of course, Intel.

So, we have this healthy business selling compilers for the
high performance Linux applications business. Who are our
customers? Let me generalize and break our customers into
two categories. In one category is a set of users who de-
velop programs for internal use. These include laboratories

and corporations developing critical modeling applications,
such as an oil company developing seismic signal processing
codes, or an aircraft engine manufacturer developing heat
analysis, stress analysis, and fluid flow codes. These de-
velopers are in a rapid compile–test–run cycle. With these
customers, the number of end-user applications per compiler
sale is relatively low, or, conversely, the number of compiler
sales per end-user application is relatively high.

In another category are independent software vendors, or
ISVs. These are developers of large commercial applica-
tions, like fluid flow or crash test applications that are pur-
chased and used by large corporations or laboratories in bi-
nary form. Here, to the compiler vendor, the direct value of
the sale is relatively low; there may be many end users of
the application for each compiler sale. The importance of
these customers comes from the marketing value of a large
ISV using our software, and also because sales of these ap-
plications to a user will often indirectly result in additional
compiler sales, which would then fall into the first group.

The point here is that we have two types of external cus-
tomers. The first type results in large numbers of compiler
users, who are constantly beating on the compiler with a
wide variety of programs, resulting in lots of feedback to the
compiler developers (us) about problems with correctness,
performance, and compatibility. The second type results in
very widespread use of executables generated by our com-
pilers, which results in extreme stress on those executables
from a quality standpoint and which in addition often gen-
erates even more widespread use of our compilers.

This is in great contrast to the embedded systems mar-
ketplace. In the embedded systems market, there are very
few (if any) compiler users who are developing applications
just for themselves. Take as a hypothetical situation, sup-
pose ST were to market a processor core for inclusion into
a cell phone. You might think ST would look forward to
the compiler sales that come with a design win, but you’d
be wrong. The compiler and software development tools are
often thrown in with the design win. This changes the fi-
nancial impact of compiler development; instead of being a
profit center, it’s a cost center. Money spent on compilers is
money not spent on architectural improvements, manufac-
turing process, marketing, and more.

Look at how the design win was made. Very similar to
the way high performance system sales were made in the
1980s, the potential customer comes up with a benchmark
program or programs that exemplify the types of computa-
tion for which the embedded system will be used. Here, the
customer can be very precise, since they already have the



application. A team of specialists inside the semiconductor
company then use whatever tools are available to tune the
program for the platform, while their competitors will have
another team doing the same for their platform.

Once a design win is secured, how many applications (read:
compiler sales and users) will this entail? Answer: few. In
fact, since the design win probably depended on successful
porting of the application (singular) to the platform, there’s
very little post-win application development, though there is
some amount of tuning, as the final product design becomes
more concrete.

In all, this results in little desire on the part of product
managers to invest in compiler and tools development. They
can invest in an applications engineer who will help port and
tune the application and get this design win, or in a com-
piler engineer who will tune the compiler with improvements
that will probably come in too late for this design win and
may or may not help the next one. Even relatively simple
and standard product features that appear in any successful
workstation compiler may be missing in these products. As
one example, we acquired the software development kit from
one of our competitors. Our experience was that the kit was
hard to buy, took a long time to get delivered, was hard to
install, and once it was finally installed, it was hard to use.
This kind of experience would never happen in a competi-
tive environment where the vendor was forced to compete
for the business and loyalty of their users.

So now let’s look at the programming environment. In
particular, let’s look at the goals when developing an ap-
plication. In our Portland Group business, we have many
customers developing large applications, either for their own
internal use or as an ISV. We have worked hard to convince
ISVs to use our compilers, and we continue to work hard to
keep their business. So, what is their criterion for choosing
a compiler suite? Correctness. Speed. Portability. And the
greatest of these is speed. An ISV with a complex code can
work around correctness, turn off the optimizer in one or
two files, and usually they have to do that for any of the
compilers they use. They can work around portability as
well; by portability I mean operating systems and hardware
platforms supported. But they can’t work around speed. So
how do we keep this important customer? Good customer
service, new features, and most importantly, increasingly
better performance on successive generations of processors
and successive releases of our compilers. There are three or
four really good, high quality compilers for x86 target sys-
tems, so we really have to stay on the ball all the time to
keep this business.

Compare this to the embedded world. Suppose I have
an application, say a CODEC for a cell phone, a typical
performance-oriented application, and I need to build this
for the next generation phone product. Suppose I come up
with a nifty compiler optimization that will give me a ten
percent performance boost for this application. All is good,
right? No, not so fast. Memory footprint is another piece
of the cost. If the performance boost comes from repeated
function inlining, or loop unrolling, these make the program
bigger. This may require a larger program memory, which
will increase the cost of our piece of the final product, and
may cause us to lose the design win. OK, suppose that
doesn’t happen, now it’s running 10% faster. So what? It’s
not like the customer of the product can talk 10% faster on
that cell phone; once we’ve hit a pre-specified performance

target, better performance isn’t that important.

On the other hand, if we speed up one part of the ap-
plication, we can perhaps slow down another part. Slowing
down that part may allow it to become substantially smaller,
again the speed versus size tradeoff, and reduce the overall
memory footprint. Alternatively, we can perhaps slow the
clock, reduce the voltage, save power and increase battery
lifetime.

In fact, the speed versus size tradeoff is a critical part
of the application build process. Much of the work by an
embedded systems programmer is taken up tuning compiler
optimization switches for the best mix of performance and
compact code size. Using a performance profiler and knowl-
edge of the application, the programmer chooses the time-
critical parts to optimize for speed, and chooses the rest to
optimize for size. If we believe the 90-10 rule, that 90% of
the time is spent in 10% of the code, then optimizing that
10% of the code for speed and the rest for size should give
the best of both worlds. This doesn’t reflect reality, how-
ever. There are other reasons to perhaps favor a slightly
slower, smaller program, or to favor a slightly larger, faster
program, as we’ve said. The desired goals are too subjective.
The balance between speed and size takes more intelligence
than we can automate.

Even more interesting are the cases where the instruction
set is itself a variable. This may range from a custom copro-
cessor, which looks more or less like floating point functional
units used to, to custom datapath extensions more closely
integrated in the core itself, to reprogrammable or reconfig-
urable pipelines, which I think is a really cool technology.
In these situations, we have even more variables to consider
in addition to the size and speed of the program: The sil-
icon footprint of the core + associated logic; extra power
required for the extra silicon; generation of the system soft-
ware (compiler, OS) that support the part. Some vendors
and much current research is addressing this area. Remem-
ber to add the cost of maintenance of these features, plus
customization or optimization of the application to use the
new instructions; hopefully this is mostly automatic.

Finally, I want to talk about some compiler techniques
themselves. We find many of the optimizations developed
for various high performance and supercomputers 20-30 years
ago are now being rediscovered, honed and redeployed in
the general purpose market. Take vectorization, which was
aimed at the bleeding edge; it’s now used on your laptops.
The same technique may be used for packed or stream op-
erations on a cell phone or MP3 player. Parallel processing
has now reached the mainstream, with multicore general
purpose processors. In the embedded market, it’s not per-
formance but power that may drive the multicore product;
if two slow cores solve the problem in the same time with a
slower clock, they can use less power due to the quadratic
voltage to power curve.

But let me focus on two particular features on compilers,
both in relatively common use today, but likely to become
more important. The first is whole program optimization,
also called interprocedural optimization; I’ll call this IPA,
interprocedural analysis. The intent of having procedures is
many-fold: modularity, simplification, code reuse, separate
compilation, etc. However, to create a whole program, some
tool has to put all this together. For standard imperative
programs, this tool is the linker. The linker’s job is rel-
atively simple: collect all the objects, look for defined and



undefined symbols in each object, resolve undefined symbols
from other objects or from libraries, relocate objects and fill
in undefined symbols with final values. But the linker typi-
cally doesn’t inspect the program, in fact it typically doesn’t
even know whether the .text sections are program or in-line
data. But here’s the point at which real global information
becomes available.

I claim that significant improvements can be made by
more aggressive use of IPA. I say this for two reasons: one,
just as the hardware guys are approaching diminishing re-
turns on how much faster they can push the clock rate, com-
piler analysis and optimization is approaching diminishing
returns on how much better we can make programs with only
local analysis. The second is the scope of the optimizations
that become available with IPA.

Let’s look at what IPA can do, even in just C programs.
The simplest optimization is constant argument propaga-
tion; there can be several benefits. The argument may be
used in a conditional, allowing the conditional to be evalu-
ated at compile time. If the argument is used as a loop limit,
the constant value can be used to determine how the loop
should be optimized. This also promotes modularity and
code reuse, by allowing one version of the function to serve
both as the general purpose code, and as the specialized ver-
sion in particular performance critical applications. Related
analysis can propagate the value of initialized, unmodified
globals to their uses.

int debug = 0;

...

foo( a, 10 );

...

foo( b, 10 );

...

void foo( float* x, int n ){ ...

for( i = 0; i < n; ++i ) x[i] ...

if( debug ) ....

}

Similar analysis propagates the values of pointers; do the
values of x and y interfere in the routine saxpy? This is
the critical question for optimization of that routine. ANSI
C now allows the restrict keyword, declaring that they
must not conflict. IPA can frequently automatically deter-
mine when this information applies. In the general purpose
research community, pointer target analysis or pointer alias
analysis is largely taken up with determining the shape and
characteristics of the dynamic data structure that is imple-
mented with pointers, e.g., a tree, linked list, ring, etc. In
the embedded world, simpler mechanisms can be very suc-
cessful, since dynamic memory allocation is less prevalent.

float z, v[100], w[200];

saxpy( 100, z, v, w );

...

void saxpy( int n, float a,

float* x, float *y ){

int i;

for( i = 0; i < n; ++i ) y[i] += a*x[i];

}

Other potentially important interprocedural analyses are
controlling function inlining, propagating argument memory
alignments, determining whether global variables are modi-
fied by a call, finding pure functions, and so on. Higher level

languages, like C++, show a raft of additional possibilities
exposed by IPA.

The second characteristic I want to discuss is performance
feedback. Here, I don’t mean profiling tools, though they
are important and should be part of a complete package. I
mean feedback from the compiler about what parts of the
program are likely to run well, and what parts are likely to
run poorly. More than that, the feedback should include
information about what features or characteristics of the
architecture or compiler prevent this part of the program
from running well.

Let me illustrate this by an example; I apologize to those
who may have heard me give this lesson before. Back in
1978, I attended a workshop at the Los Alamos Scientific
Laboratory, as it was called then, on scientific parallel and
vector computing. The Cray 1 had been installed there for
two years, and there were many Cray users, along with users
and vendors of other supercomputers. Most of the Cray
users were migrating their codes from Control Data 6600 and
7600 machines. The big initial selling point for the Cray 1
was that it was twice as fast as the previous fastest machine
at the time; it had an 80 MHz clock (12.5 ns), whereas the
7600 was running at 40 MHz. That the Cray had a vector
mode was a bonus on top of that, but a pretty big bonus.
The common lament, repeated often, was that the users had
to spend hours rewriting all their programs because the un-
mentionable Cray Fortran compiler wouldn’t vectorize their
inner loops. The crying and whining was pretty intense, and
these were bleeding edge programmers, who were really in-
terested in getting the last drop of performance out of the
machine. I took this as a charter to continue research on
automatic vectorization and parallelization; in fact, some of
us started a little software company to sell tools based on
our research.

Jump ahead just eight years: I was at another workshop,
sponsored by SIAM, the Society for Industrial and Applied
Mathematics. There, we were talking about how great our
vectorization software was, but the response we got, from a
number of Cray users, was the Cray Fortran compiler was
pretty good, it vectorized all their codes, they got all the
performance they wanted, and never had to resort to CAL,
the Cray Assembly Language. So what happened? Did the
Cray compiler really get an order of magnitude better in
just eight years?

In fact, the compiler had improved quite a bit, but that
wasn’t really what satisfied all their customers. There was
another effect, caused indirectly by the compiler. This was
in the days of batch computing, so the compiler would pro-
duce a program listing, which included some very important
information; for each loop, it would tell the user whether the
compiler was able to generate vector code or not. More than
that, if not, the compiler would give information about what
part of the loop prevented vectorization. This loop, this line,
this array reference, this variable in this array reference at
this line in this loop prevents me (the compiler) from vec-
torizing the loop; change this line, and maybe I can do a
better job.

The difference between vector and scalar performance on
Cray systems was so dramatic that users paid very close at-
tention to the compiler feedback. This is an interesting inter-
action; it’s almost Pavlovian: bad programmer, you wrote
a nonvector loop. Good programmer, this loop vectorizes.
And the result was two-fold. By 1986, all those old programs



had been rewritten, and the inner loops all vectorized. The
second, and more important, effect was all those old pro-
grammers had been trained by the compiler to respect the
limits of the compiler. All inner loops must run down the
stride-1 dimension, use simple subscripts, subroutine and
function calls must be removed, and so on.

How is this important today? Again, let me illustrate by
anecdote. In our Portland Group business, one of the goals
is good benchmark performance, and one of the important
benchmarks is SPEC. Below I show one of the critical loops
in the ART benchmark. The performance of the benchmark
depends on the performance of this and a couple of similar
loops, and the performance of this loop depends entirely on
the performance of the cache and memory. But there are
several problems here. The struct f1 layer has 8-members,
each 8 bytes long. This means each element of f1 layer

takes up a whole 64-byte cache line. So while we’re travers-
ing the array f1 layer, we only use one value out of each
cache line. Even worse, the two-dimensional bus array is dy-
namically allocated, and we’re traversing down the columns;
because bus is dynamically allocated, the compiler can’t as-
sume anything about its addressing. A few more comments:
it turns out that the inner loop has a length of about 10,000,
while the outer loop has only 6 iterations, and the condi-
tional around the inner loop never trips, at least not for the
benchmark datasets.

struct {

double *I; double W, X, V, U, P, Q, R; }

*f1_layer;

double **bus;

for( tj = 0; tj < numf2s; tj++ ){

Y[tj].y = 0;

if( !Y[tj].reset )

for( ti = 0; ti < numf1s; ti++ )

Y[tj].y += f1_layer[ti].P * bus[ti][tj];

}

I’ve seen at least three ways to optimize the program to
make this loop run faster. Some compilers, automatically
mind you, do what is sometimes called the ART hack. They
reorganize the data for the struct f1 layer. The array-
of-struct is restructured to become a struct of arrays. It
takes up the same amount of space, but now each element
f1 layer[ti].P becomes f1 layer.P[ti], so becomes adja-
cent in the cache line; this in itself gives a significant perfor-
mance boost in this loop and in other places in the program.

The second trick employed by some compilers is to in-
terchange the two loops; the key here is the bus accesses
are non-adjacent, have no cache locality, and require a row
pointer load followed by a data load; so let’s switch the two
loops. There are two problems here; one is that the inner
loop is very long, but after interchanging, the new inner loop
is quite short. Also, interchanging takes the conditional that
was outside that loop and brings it inside both loops. This is
quite dangerous, yet at least one compiler implements this, if
only because of the (somewhat artificial) importance of this
benchmark. This gives over a factor of two improvement
in the whole program, on one particular cache-dependent
general purpose architecture, just from implementing this
optimization.

The third trick, not implemented by any compiler that I
know of (yet), is to leave the loops the way they are, and

to transpose the array bus. It turns out bus is all dynami-
cally allocated, in the normal C manner, but it is generally
accessed by the wrong dimension. If we transpose the di-
mensions, the performance of this loop really screams. In
fact, the performance drops by about a factor of 8 (not a
misstatement) for this cache-dependent architecture, by re-
structuring the data.

The point I’m trying to make is not that compilers need
to start looking at questionable optimizations, or data re-
organization, though artificial benchmarks may drive that
development anyway. The key is that in a real application
with real performance sensitive users, if the user gets reli-
able feedback that there is a performance problem in this
loop, or this routine, here are the parameters, here are the
performance bottlenecks, here is a list of possible things to
check out for correcting it, that user is going to be (a) mo-
tivated to focus on these bottlenecks, (b) learn how to work
around such problems, and (c) trained how to avoid such
bottlenecks in the future. The end result is better tuned
applications for all, and more effective use of programmers
talent.

Summary
The economics and marketplace realities of the embedded
world make it difficult to convince program managers to in-
vest sufficiently in compilers and tools for their systems. The
software that exists is often a step or several steps below the
quality and utility that we expect and receive in the general
purpose workstation business. It takes a visionary to correct
this situation. Economics will not make the argument.

Most compiler optimizations key on reducing the running
time of the program. Two other important metrics in the
embedded world are the program size and the power used.
There is a careful balance among these three, and they have
not nearly been fully explored. Some compilers optimize
for size by simply disabling certain size-detrimental opti-
mizations, like loop unrolling or function inlining. I claim
that this is insufficient, and more needs to be done here. It’s
interesting that texts written in the 1970s, when I took com-
piler classes, at least gave a nod to the idea of optimizing
for size, though most modern texts don’t even mention it.

As for compilers for low power, a couple of years ago I
surveyed the field of compiler optimizations for low power
systems. I found a number of papers claiming to address this
problem, but one of the first sentences would be something
to the effect of “Programs that run faster use less power, so
we focus on improving program performance.” While the
work may be significant, it’s being recast as something it
is not; the community, that’s you, should require that pa-
pers with disclaimers like this be rewritten and resubmitted,
probably to a different conference or journal.

And finally, whole program optimization and performance
feedback are becoming an important part of the whole toolkit
for optimizations. Whole program optimization or IPA is
becoming standard practice in the general purpose commu-
nity, at least for benchmarks, and is increasingly important
for the user community; it opens up a whole new array of
optimization opportunities. Performance feedback is an ef-
fective way to bring the programmer into the optimization
loop; the programmer can do things the compiler can’t even
dream of, and if we can focus that creativity in the right
place, good things happen.


