Embodied Learning x Technology

Standard

What a mind bender!  My preconceptions about where my readings on Embodied Learning would go were blown out of the water.  I expected to hear about VR/AR/haptics: tech-facing and .  Far from this, embodied learning is more like a philosophical treatise on identity and environment.  What a revelation it is to think of environment and individual as a single body, evolving constantly, rather than separate, interacting entities (Winn, 2003)!

I was interested with how Winn (2003) laid out a framework for embodied learning.  The part that resonated most with me was the concept of ‘Umwelt’ – the environment as it is uniquely perceived by each individual.  In particular, the point about the challenges of teaching students with idiosyncratic Umwelten that change in unpredictable ways connected deeply with my experiences as a middle school classroom teacher.  In addition, the idea of finding ways to ‘couple’ students to their environment (artificial or otherwise) was intriguing to me, and meshed with the Coimbra et al (2015) article about using augmented reality in math education.  Seymour Papert once described an ‘artificial environment’ where math learning happens as organically and seamlessly and language learning – he called it ‘Mathland’.  From reading these articles on embodied learning, AR/VR seem like a glimpse into this mythic realm, if not a full gateway.  Coimbra et al (2015) found that higher education students reported AR math problems to be more perceptible than other ways of teaching.

Combine this with the pointing, representational, and metaphoric gestures studied by Alibali & Nathan (2012;2011), and we have the makings of our classrooms turning into remakes of the Steven Spielberg film Minority Report.  With the confluence of these ideas, I imagine AR/VR could both couple student with a ‘Mathland’-like artificial environment, and allow the meaning-making gestures that the student and teacher make could manifest themselves into visual representations in real time.

Questions:

What is the baseline of common ground that must be found between individual Umwelten to make communication and mutual understanding possible?

Much was made of the efforts needed and strategies possible to couple students to artificial environments.  With student life increasingly being spent online or in other artificial environments, what strategies are needed to ensure children (and adults) are coupled with the physical world?

 

References

Alibali, M. W., & Nathan, M. J. (2012;2011;). Embodiment in mathematics teaching and learning: Evidence from learners’ and teachers’ gestures. Journal of the Learning Sciences, 21(2), 247-40. doi:10.1080/10508406.2011.611446

Coimbra, M. T., Cardoso, T., & Mateus, A. (2015). Augmented reality: An enhancer for higher education students in math’s learning? Procedia Computer Science, 67, 332-339. doi:10.1016/j.procs.2015.09.277

Winn, W. (2003). Learning in artificial environments: Embodiment, embeddedness, and dynamic adaptation. Technology, Instruction, Cognition and Learning, 1(1), 87-114. Full-text document retrieved on January 17, 2013, from: http://www.hitl.washington.edu/people/tfurness/courses/inde543/READINGS-03/WINN/winnpaper2.pdf

If I Were a Carpenter…

Standard

“If the only tool you have is a hammer, [you] treat everything as if it were a nail.” – Abraham Maslow (1966)

One of the areas that most fascinates me as a math teacher is assessment.  It is a topic that I have wrestled with since I became a teacher and saw early on how inauthentic it can be.  We looked at assessment in one of my other MET classes, and I wanted to remind myself of some of the key ideas I have come across as ETEC 533 winds down.

The academic test, and especially the multiple choice test, may be one of the best expressions of Malsow’s saying.  For almost 200 years, we have used tests to find out what content information is stored inside a student’s head.  In his video, Eric Mazur (2012) describes in his video how irrelevant this process is now that information is so readily available, saying that any question that can be answered with a google search is a bad question.

Is the test as we knew it dead? It seems the answer is both yes and no.  Mazur (2012) talks about tests changing to be more process oriented – that the modern test should be open book, with all tools available in use, and even collaborative at times.  Conversely, David Nicol (2007) shows a way forward using multiple choice questions (MCQ) as a formative assessment tool.  His 7 principles of good feedback can be applied to MCQ’s to transform the method in which the old tool is used.

Both of these thinkers give ideas that resonate with me in my teaching practice.  It is also connected very closely with work I did previous class when asked to find ways to use a digital tool for self assessment.  Below is a video of how I have used MCQ’s in google forms to transition the academic test from the exclusive domain of teach control, and give much of the power of assessment to my students.  This tool actually became very versatile once I stopped thinking of it as a hammer.

Questions remain for me.  How else could we use the data that we collect?

I think the usefulness of the tool for my students is twofold – formative self-assessment, and bolstering their positive feelings about themselves, math, and themselves as mathematicians. In what other ways can this tool be used for my students?

References

Maslow, A. H. (1966). The psychology of science: A reconnaissance ([1st]. ed.). New York: Harper & Row.

Mazur, E (2012) Why You Can Pass Tests and Still Fail in the Real World (9:32) 
https://www.youtube.com/watch?v=TyikmLxntrk

Nicol, D. (2007) E‐assessment by design: using multiple‐choice tests to good effect, Journal of Further and Higher Education, (31),1, pp. 53-64, http://ezproxy.library.ubc.ca/login?url=http://www.tandfonline.com/doi/abs/10.1080/03098770601167922

Comparing Technology-Enhanced Learning Environments

Standard

 

After exploring these 4 TELE’s, it is clear that they all are built on the premise that learning is constructed through experience – by moving through cycles of dissonance, integration, and resonance.  These shared roots in Constructivism serve to guide each tool/framework toward student-centred, reflective, and collaborative learning. In addition, inquiry has some implicit or explicit role in each approach.  Another theme that emerged was that content is not as meaningful without a context.  Each one of these TELE’s, to varying degrees, aims to make learning relevant and meaningful, contextualizing it and attempting to create (or have students create) problems they are motivated to solve.

 

Personally, experiencing these TELE’s has been very inspiring to the science teacher in me, and created longing in the math teacher inside me.  The science based TELE’s provide not only theoretical and philosophical frameworks for enriching learning, but also specific ways to reimagine the lab experiment experiences of our students.  The math teacher in me still pines for authentic, inquiry/project-based experiences for my students.  The benefits of some of the frameworks, especially T-GEM, are clear: using models to identify and modify misconceptions (I think of examples like modelling how subtracting a negative is the same as adding a positive or how area models can help explain visually the concept of multiplying fractions) is a powerful strategy.  However, when I try to create a web-based inquiry environment for math, I continually stall.  This is likely a lack of imagination on my part, and I can’t help but feel that my students are the poorer for it. I am determined to continue searching, creating, tinkering, and collaborating until I can provide the same rich TELE experience for my math students as I now can in science.

 

References

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385.

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.
Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538.

Crush All Misconceptions!

Standard

One of the areas that I noticed my students struggling with when I taught science in the past was diffusion and osmosis.  There were a few ways I could tell this was a topic rife with misconceptions:

  1. They were concepts that most students struggled to define/explain adequately on tests.
  2. Even high performing students had trouble differentiating the two.
  3. Their hypotheses and reflections on labs showed a lack of understanding

I think one of the reasons is that they have difficulty with the scale that is involved and the concept of concentration gradients.  From a scale point of view, I think students have misconceptions about liquids because of their sensory observations.  They see liquids as homogenous substances, and struggle to understand that there are tiny atoms/molecules moving around and colliding.  With concentration gradients, I think they have a difficult time understanding why particles move from areas of high concentration to areas of low concentration.  Two prominent misconceptions I have noticed arise from some of the most popular ways of describing diffusion.  The first is the personification of particles – teachers often imbue consciousness on particles by describing diffusion in terms of particles ‘seeing’ the high concentration and ‘knowing’ that they must move to another place.  Another way of describing concentration gradients is the idea of a ‘downhill’ force that takes particles from high concentration to low concentration.  My students would often take this explanation and turn it into a misconception that diffusion was driven by gravity.

For the purposes of my T-GEM, I have ‘created’ a new tech tool –  an interactive demo/game in which particles move around the screen in a way consistent with kinetic molecular theory (please forgive my improvised attempt at showing this visually in my video!), and students can control the variables.  I think interacting with a demo/game like this would help dispel misconceptions and help students make meaning of the process.

 

Web-Based Science Inquiry Environments (WISE)

Standard

For my WISE exploration, I chose to tinker with a unit on Plate Tectonics (ID: 19749).  I really liked the way the original author set up her/his unit.  I made a few changes to reflect some elements that are important to me.  First, I replaced a number of static diagrams with GIFs.  It seemed silly to me to show dynamic processes with a static image – if the technology can demonstrate the concept more accurately, then do it!  Second, I did away with the “Extra Credit” section.  These always feel like the domain of mark counters, and I don’t want my students motivated by that.  The irony was that many of the most interesting activities that the original author created were dubbed “Extra Credit”.  I kept the activities, but dropped the moniker.

For my lesson (directed at grade 8 students), I am going to begin by having students generating driving questions with the ultimate goal of using the questions to motivate student inquiry.  Each student will generate questions and do some initial information gathering to see if their inquiry is generating interesting, satisfying information.  The WISE will be a source of information for them and act as a jumping off point for their big questions.  Students will investigate their questions with the goal of creating a record of their inquiry in the form of an experiment, a presentation, a video, a podcast, etc..  Each student will participate win a roundtable where they will ask questions about the work, methods, and research of their peers with an aim to improve their inquiry skills through collaborative discussion.  Finally, my students will reflect on their process – assessing their learning, highlighting areas they are proud of, and identifying difficulties they had and how they can address then in their next inquiry.

One of the key goals of WISE’s and Scaffolded Knowledge Integration is to make science accessible (Linn, Clark, & Slotta, 2003).  One of the ways that access is improved with the WISE, is that it is available to the student whenever it is needed.  Unlike a teacher, who is accessible during class time, or a text that, for many students, requires interpretation or guidance for understanding, the WISE can meet the student wherever/whenever they want to learn.  Giving students this resource is another way to manage the proliferation and entrenchment of misconceptions.  In the movie A Private Universe, access to visual models seemed to help students break down their incorrect impressions of scientific concepts/processes.

Finally, the WISE format lends itself nicely to providing timely feedback to my students on their understanding. Hattie & Tamperly (2007) describe feedback as a tool to reduce disparities between understanding and performance.  The marked ‘quizzes’ and predictive writing in the WISE would allow me to keep an eye on student understanding and respond promptly with questions, corrections, or prompts to help shrink the gap between student understanding and performance.

 

References

Hattie, H. & Timperly, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112.

Linn, M., Clark, D., & Slotta, J. (2003). Wise design for knowledge integration. Science Education, 87(4), 517-538