The My World software offers students the opportunity to work with compiled data and investigate its relationship to the world in various contexts. It has significant applications for Science, Social Studies and Math. The Analyze option enables users to create tables of comparative data that can be exported and accessed at at later date. After completing a sample lesson locating major world cities with a proximity of 500 km or less from Vancouver and measuring their distance away, I explored some of the other data sets in new layers in a new project. I was able to locate and measure the distance of volcanoes within a certain range in relation to Victoria and Vancouver, B.C. The data offered interesting information about each volcano in the table it generated including elevation, type and last eruption. Considering most students would be surprised by how many volcanoes are actually in our general vicinity, this information could be the motivation for the first step in the Learning for Use framework. Reaching the limits of their understanding, knowing there is a need for new knowledge to understand this phenomena – because who wouldn’t want to know more about volcanoes in your own backyard! – would elicit a desire to learn more.
Becoming comfortable with the My World software is essential as I didn’t find it very intuitive overall. Working with layers and navigating through the Analysis option can be cumbersome. I ran into a glitch with the Analysis option when I was exploring different features in the program. Suddenly, choosing a way of analyzing wasn’t an option and for some reason (I didn’t have a lot of time to investigate, unfortunately) this happened when I started a new project from already inside the program versus starting one when the program first opened. I don’t mind trouble shooting with technology. In fact, I enjoy the challenge, but I know that others would get frustrated and decide it’s not worth it.
Although this was an issue specifically with My World, this problem drew me back to Edelson’s advice about educator’s implementing the LfU framework and how important it is that the constructivist theory of learning embedded within its structure needs to be embraced by teachers as learners, too. If teachers are to “learn to use it successfully, they must go through a learning process themselves that incorporates the steps of Learning for Use” (Edelson, 2001, p. 381). To do this, it takes time and we all know how time gets in the way of a lot of things we want to do as teachers. I think this is a big hurdle in educational reform. There are great ideas for change, proven ideas, but to really understand and embrace new pedagogy and revise your practice, you must commit to spending time being a learner first.
Pellegrino and Brophy (2008) also mentioned the obstacles created by inert knowledge and the measures they took in the Jasper Series to increase students’ transfer skills. They were committed to not giving “students tools because these can often be applied without understanding, causing people to fail to adapt when situations change” (p. 283). To a teacher, would LfU not be considered a tool? And if it’s demonstrated to them and they are interested in applying it, how do we encourage teachers to take the time to experience it as a learner? How do we convince them that the time is worth it and how understanding the framework is vital to being successful with it? An inquiry model isn’t something you can script – otherwise it becomes mechanical and loses authenticity. You need to breathe it.
I’ve ended up thinking a lot about this dilemma. The goal of LfU is to overcome inert knowledge and help students generate useful knowledge, but do all teachers know the difference between routine expertise and adaptive expertise? How many teachers are experts with inert knowledge and believe this is the goal of education? Adopting pedagogical models like LfU on a wider basis may have more obstacles in their way than anticipated. Are we asking teachers to teach skills that they may not possess themselves? Edeslon is absolutely correct when he states that integrating LfU “is not a simple process” (2008, p. 381). But at the same time, I think there is simplicity in the LfU framework that increases the likelihood that teachers are able to connect with it’s pedagogical design, if time (there it is again) is put into helping others understand it. It could be a model that schools adopt as common ground for developing an inquiry base with students.
Volcanoes Near Victoria & Vancouver (analysis table example)
image: volcano erupting, Guatemala by photosbesthike by phreleased under a CC Attribution – Noncommercial license
Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385.
Pellegrino, J.W. & Brophy, S. (2008). From cognitive theory to instructional practice: Technology and the evolution of anchored instruction. In Ifenthaler, Pirney-Dunner, & J.M. Spector (Eds.) Understanding models for learning and instruction, New York: Springer Science + Business Media, pp. 277-303.
Concepts in Earth Science can be challenging for students to grasp as real examples relating to curricular content are often difficult or simply cannot be brought into the classroom to provide students with first-hand experience with them. Size and accessibility are factors which compromise students’ abilities to form mental models that accurately reflect scale, so comparative models are often relied on in place of actual phenomena or their processes. For students to conceptualize these appropriately, spatial-thinking and scale must be understood which requires abstract reasoning that teachers cannot presume is already present. Lack of opportunities to collect first-hand data presents an additional problem, which results in an over-reliance on data banks that detract from the authentic mirroring of processes within the scientific community.
Although the motivation exists, building inquiry into the science classroom to better mirror realistic scientific discovery has been hampered by the need to reach a plethora of curriculum standards. The motivation behind the development of
When technology is introduced into the math classroom, one potential pitfall that can impede its integration and the impact it has on student learning is the degree of flexibility it provides in how problems can be solved. With all of the technology possibilities that can be found online, drill and practice activities and games continue to be teachers’ most popular choices. Why? Historically, instructional design in math has been promoted through a linear and cumulative progression whether it’s in the classroom, face to face, or online. It’s familiar. It’s easy. It appears that students are improving their skills when they use it. So what’s the problem?
After an initial introduction to the
Using anchored instruction in the Jasper series, instructional designers sought to create effective learning environments that were knowledge-centered, learner-centered, assessment-centered, and community-centered encapsulating the four dimensions of How People Learn. Authentic complex problems became the anchors around which activities and instruction were based helping students connect with a wider community while providing a window into the relevance of math and science outside the classroom. The possibility for multiple solutions also offered students greater perspective on the application of math concepts in the real world, and having access to multiple perspectives in the classroom exposed students to different perceptions among individuals and the collective. The challenges integrated experiential learning, guided learning and active learning promoting increased opportunity for developing “adaptive expertise” rather than limiting students to “routine expertise” which does not require depth of understanding to complete tasks quickly and accurately (Corte, 2007). Teachers were encouraged to further support students increasing flexibility of transfer by exposing them to analog problems designed to stimulate the invention of solutions for recurring problems, consequently enhancing students’ willingness and readiness to take risks with new learning challenges and seek effective solutions.
In the late 1980’s and early 1990’s, researchers at Vanderbilt University in Nashville, Tennessee developed and launched The Adventures of Jasper Woodbury, which consisted of a series of videos and mathematical problem solving scenarios aimed at middle school students. The videos depict real people in authentic situations that require math reasoning to solve.
What is technology? For a word that is ubiquitously used, within formal and informal educational settings, to describe so much in our digital world, it makes me wonder to what extent people actually stop and contemplate what it means to them.