Looking Back: Jasper Revisited

After an initial introduction to the Jasper Series, visions of linear technology use, limited diversification potential,  and isolated learning experiences seeped into my brain. Why? Because I assumed, based on quick and scattered facts, that there would be issues with any artefact designed twenty-odd years ago. Big assumption. It definitely provokes a desire to investigate the series more in the hopes that educators and learners can continue to learn from the extensive research and collaboration that went into its creation. I certainly hope that now after reading and learning about the Jasper Series, I will eventually get to see it in action one day.

On further investigation, it was clear that in reality the Jasper Series was ahead of its time. I have to say I was pleasantly surprised by the theoretical framework the Cognition and Technology Group at Vanderbilt (CTGV) utilized in the creation of the Series. This was an incredible venture incorporating the dimensions of How People Learn while embedding cognitive theory in the instructional design.Over the course of almost two decades, the CTGV intertwined “theory, instructional design, research on learning and assessment, technology, teacher knowledge and professional development and the realities of diverse learners in diverse instructional settings” (Pellegrino & Brophy, 2008) into their ongoing development of Anchored Instruction. Their assumptions about learning are grounded in a constructivist framework prompting the design of learning activities that focus on opportunities for students to create knowledge for understanding within social contexts. Using the principles of How People Learn, the Jasper series was devoted to designing powerful learning environments that encompass these four dimensions:

  • Effective learning environments are knowledge-centered
    • explicit attention to what is taught, why it is taught, supports learning with understanding rather than remembering, and identifies what competency looks like
  • Effective learning environments are learner-centered
    • teachers pay careful attention to what students know as well as what they don’t know, and continually work on building on students’ strengths and prior knowledge
  • Effective learning environments are assessment-centered
    • importance is placed on making students’ thinking visible through the use of frequent formative assessment, designing instruction accordingly, and helping teachers and students monitor progress
  • Effective learning environments are community-centered
    • emphasis is placed on building a sense of comfort with questioning rather than knowing the answers, and developing a model of creating new ideas that build on the contributions of individual members

This is a model of instructional design that has yet to date itself and should be in the forefront of educators’ minds in current practice. Pellegrino & Brophy’s (2008) advice on how to best implement Jasper learning activities in the classroom can also be applied to the context of other classroom activities because it encourages the development of adaptive expertise and conceptual understanding. If process is the critical component needing to be highlighted in education, then the ability to seamlessly transfer skills to different contexts or repeated contexts is essential. I can’t help but think had I seen the Jasper Series earlier in my career, it could have sparked greater reflection and increased innovation in my teaching long before I started to question the effectiveness of teaching with the traditional imbalance of guided-instructional strategies.

 

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315.

Corte, E. (2007). Learning from instruction: The case of mathematics. Learning Inquiry, 1, 119–30. doi: 10.1007/s11519-007-0002-4.

Pellegrino, J.W. & Brophy, S. (2008). From cognitive theory to instructional practice: Technology and the evolution of anchored instruction. In Ifenthaler, Pirney-Dunner, & J.M. Spector (Eds.) Understanding models for learning and instruction, New York: Springer Science + Business Media, pp. 277-303.

image: DSCN10816 by subewl released under a CC Attribution – Share Alike license

Using Technology to Create Powerful & Effective Learning Environments

Using anchored instruction in the Jasper series, instructional designers sought to create effective learning environments that were knowledge-centered, learner-centered, assessment-centered, and community-centered encapsulating the four dimensions of How People Learn. Authentic complex problems became the anchors around which activities and instruction were based helping students connect with a wider community while providing a window into the relevance of math and science outside the classroom. The possibility for multiple solutions also offered students greater perspective on the application of math concepts in the real world, and having access to multiple perspectives in the classroom exposed students to different perceptions among individuals and the collective. The challenges integrated experiential learning, guided learning and active learning promoting increased opportunity for developing “adaptive expertise” rather than limiting students to “routine expertise” which does not require depth of understanding to complete tasks quickly and accurately (Corte, 2007). Teachers were encouraged to further support students increasing flexibility of transfer by exposing them to analog problems designed to stimulate the invention of solutions for recurring problems, consequently enhancing students’ willingness and readiness to take risks with new learning challenges and seek effective solutions.

Technology played a key role in the designers’ efforts to integrate instructional strategies and tools that supported meaningful learning through the investigation of authentic problems within a scaffolded environment. Using video, complex problems involving the practical use of mathematical skills could be introduced to students in an authentic context that could be view and reviewed. This created a unified foundation for the students who then worked collaboratively to generate ideas while still allowing for the development of multiple perspectives promoting increased flexibility of thought. Incorporating technology also offered increased learner engagement and a creative method of introducing math-related scenarios that cannot be duplicated within a classroom without it. Access to important information and data was improved with the development of technology tools allowing student navigation of the video story in a non-linear fashion, emphasizing that authentic problem solving does not require a rigid set of rules that must be followed in a particular manner – it is a process of visiting and revisiting data, as well as refining and applying potential solutions. The technology base helped strengthen the development of a community of learners through collaborative inquiry working towards finding a common goal, although greater gains could have been achieved if the Jasper technology had offered similar social opportunities to the SMART model whereby students had access to a more robust collection of alternate perspectives, including real students’ work. In addition, technology could have afforded increased formative assessment opportunities (self, peer, teacher) encouraging conceptual growth and greater understanding about the value of revision. As noted by Pellegrino and Brophy (2008), the depth of formative assessment and community building within the Jasper project could have been improved upon. Technology could have help the designers balance the four dimensions of How People Learn to a greater extent; however, technology that could facilitate these two areas has improved tremendously over the last two decades and the options for integrating it for these purposes today presents a different context than what was available to the Jasper designers at the time.

 


Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315.

Corte, E. (2007). Learning from instruction: The case of mathematics. Learning Inquiry, 1, 119–30. doi: 10.1007/s11519-007-0002-4.

Pellegrino, J.W. & Brophy, S. (2008). From cognitive theory to instructional practice: Technology and the evolution of anchored instruction. In Ifenthaler, Pirney-Dunner, & J.M. Spector (Eds.) Understanding models for learning and instruction, New York: Springer Science + Business Media, pp. 277-303.

image: Anchor by Keka 😉 released under a CC Attribution – Noncommercial – No Derivative Works license