Getting to Know Gooru

Searching for online math and science resources that exemplify knowledge representation and information visualization can be a time consuming process. There are a never-ending supply of examples to peruse and choose from, but surveying the quality of these options is left up to the individual exploring. Gooru aims to alleviate this arduous task for teachers by compiling resources that meet their standards of design and depth. This site houses significant potential. Gooru is essentially a collection of math and science resources at the grades 5-12 level, and in an effort to streamline the process for quality material, all content is evaluated by teachers or Gooru’s review team. Examples of resources include digital textbooks, animations, simulations, and videos – both teaching resources and study guides are available. All content is organized by curricular strands to help with locating relevant resources. Within its design is also the opportunity to connect with others (students, teachers and experts) through discussion forums intended to encourage the social nature of learning. As you use the site, it begins to adapt to your preferences and recommends resources that you might find beneficial. While it includes copious amounts of teaching resources, students may also use it independently to track their progress in understanding concepts.

“Gooru is developed by a 501(c)(3) nonprofit organization with a mission to honor the human right to education and make high quality education free and accessible to the world’s one billion students by 2013”

It is currently considered to be in its alpha stage, but Gooru designers and developers have committed to maintaining its open-source form in perpetuity in an effort to develop a sustainable educational culture by providing high quality resources through world-wide collaboration between students and teachers. Their goal is to facilitate global access to knowledge.

This collection of online math and science resources has immense potential and deserves to be considered for what it can offer teachers, parents, and students. It’s commitment towards offering equitable access to educational material around the world is admirable and inspiring, and helps to break down the misconception, often perpetuated within the four walls of the traditional classroom, that learning has to be place and time-based ultimately restricting its accessibility and determined by the expert orchestrating it all.

Illuminating Illuminations

In their investigation into the effectiveness of computer simulations, Finkelstein et al. (2005) concluded that “the conventional wisdom that students learn more via hands-on experience is not borne out by measures of student performance on assessment of conceptual understanding” due to their findings that “properly designed simulations used in the right contexts can be more effective educational tools than real laboratory equipment, both in developing student facility with real equipment and at fostering student conceptual understanding”. Providing students with opportunities to explore concepts in a variety of contexts enriches the learning environment and diversifies instruction to better meet student needs. In the mathematics lesson below, the concept of fractions is embedded in inquiry-based activities to help students visualize this concept while exploring selected interactive applets. Reflection plays a key role in the intended abstraction as a means of guiding students through a process of self-assessment to better understand their conceptual understanding.

Illuminations Lesson for Fractions
(click link above for lesson)

Rationale

By Grade 7, students are expected to have a basic, but solid, understanding of fractions so that they can proceed with more in depth explorations of relationship comparisons and eventually addition and subtraction operations. Unfortunately, this is often not the case and measures need to be taken to assist students’ conceptualization of fractions in preparation of their extensive use in math strands in successive grades. Much of the problem seems to lay with students’ misconception and simplification of fractions down to sets of rules to be committed to memory creating inaccurate mental models. It’s not surprising then that they are frequently unable to adapt strategies they have used in one context to fit a new situation. Their knowledge of fractions remains superficial and does not lead them to a deeper understanding of what fraction symbols communicate as a representation of a whole. When learning abstract concepts, such as fractions, students must understand the fallacy of focusing on memorization as it “leads to ‘inert knowledge’ that cannot be called upon when it’s useful” (as cited in Edelson, 2001) resulting in a poor or non-existent transfer of skills.

Using Illuminations activities provides students with a “variety of visual cues in the computer simulations [to] make concepts visible that are otherwise invisible” (Finkelstein et al., 2005) or at least more difficult to visualize. When integrated into an inquiry-based framework, they can be used to enhance students’ abstraction of fraction concepts while promoting the acquisition of adaptive expertise and thinking skills.

Intertwining the constructivist principles of the Learning for Use framework and T-GEM instructional model provides and impressive foundation for math explorations. The GEM cycle stages of Generate – Evaluate – Modify are complemented by the 6 tenets of LfU, motivate, elicit curiosity, observations, knowledge construction, refine and apply. While collecting information and generating ideas, curiosity and motivation are provoked as students realize what they do not yet know, but need to in order to be able to complete the task. Through key observations, students construct knowledge as they begin to evaluate their assumptions around relationships between variables. As students work to modify their original theories, they need to refine and apply new understandings that have arisen from their investigation. Applications of the LfU and T-GEM frameworks to instructional design presume that overlaps in each of the stages will occur as they both involve a cyclical process of exploration and inquiry. In fact, several cycles may be needed due to the incremental nature of learning; however, the order of the stages remains a critical factor. In the lesson outlined above, two complete cycles of T-GEM and LfU can be observed.

 


British Columbia Grade 7 Math Learning Outcome (Number – A7)

  • compare and order positive fractions, positive decimals (to thousandths) and whole numbers by using
    • benchmarks
    • place value
    • equivalent fractions and/or decimals

Comparing percent to fractions and decimals is a Grade 6 outcome, but by Grade 7 this is consistently not understood well so it needs to be re-taught in preparation for Grade 8 expectations with percent (greater than 100% and fractions of percent between 0 and 1) providing students with a more substantive opportunity to understand the overriding relationships between all three values; therefore, in this activity, this Grade 6 learning outcome will be reinforced as an integral component of the task.

Grade 6 Math Learning Outcome (A6): demonstrate an understanding of percent (limited to whole numbers) concretely, pictorially, and symbolically.


Before beginning lessons involving self-directed exploration of Illuminations activities, students must possess sufficient background knowledge to prepare them for success with the simulation activity. If the expectations for student learning are high given their current context, they will have difficulty navigating the activity (Kalyuga in Srinivasan, S. et al, 2006) and finding the necessary motivation to learn what they need to know to be successful. In this scenario, essential prior knowledge includes an understanding of:

  • numerator, denominator, common/proper fraction, improper fraction, mixed number, whole number, simplest form, equivalent fractions, multiple, factor, benchmark fractions/decimals/percents, addition equations equaling 1 whole, decimal place value (tenths, hundredths), parts of one, relating fractions to decimal place value, percent

Along with having prior knowledge, students must be able to access and activate it; therefore, the initial introductory task is intended as a revision of fraction concepts and relationships, which become essential elements, within the subsequent scaffolded activities.

(This post serves as further reflection on the application of knowledge representation and information visualization as it applies to my future personal practice and includes the alternate activity requested in lieu of directly related papers on the use of Illuminations)


References

Edelson, D.C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching,38(3), 355-385. http://onlinelibrary.wiley.com/doi/10.1002/1098-2736%28200103%2938:3%3C355::AID-TEA1010%3E3.0.CO;2-M/abstract

Finkelstein, N.D., Perkins, K.K., Adams, W., Kohl, P., & Podolefsky, N. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physics Education Research,1(1), 1-8. Retrieved April 02, 2006, from: http://phet.colorado.edu/web-pages/research.html

Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.

Srinivasan, S., Perez, L., Palmer, R., Brooks, D., Wilson, K. & Fowler, D. (2006). Reality versus simulation. Journal of Science Education and Technology, 15(2), 1-5

Expectations of Linear Math

When technology is introduced into the math classroom, one potential pitfall that can impede its integration and the impact it has on student learning is the degree of flexibility it provides in how problems can be solved. With all of the technology possibilities that can be found online, drill and practice activities and games continue to be teachers’ most popular choices. Why? Historically, instructional design in math has been promoted through a linear and cumulative progression whether it’s in the classroom, face to face, or online. It’s familiar. It’s easy. It appears that students are improving their skills when they use it. So what’s the problem?

The problem is that math reasoning and the development of process skills that foster conceptulaization are not best served by linear pathways. Looking back on one of the interviews I conducted earlier in this course, the same dillema presented itself to Teacher B that had integrated technology in her math classroom for her master’s thesis. In her research on teaching mathematics using technology for the purpose of motivation and engagement in 2005, she found the options available online, even with a paid subscription, offered limited potential for flexible thinking. Although teachers might relish the idea that they can track student progress as they work through linear modules relying on algorithmic knowledge are they really promoting knowledge for understanding? Does success in a linear math program transfer to success with math outside that particular context? Why have we become so habituated to students learning math through memorization of symbols and steps?

This perpetuated belief that math is best taught along a direct pathway from A to B bypasses the importance of understanding math processes and developing adaptive expertise that moves beyond the inert knowledge we have previously celebrated. Assessments need to change to reflect what needs to be valued in terms of success with math concepts as well. Technology could be a catalyst for reform if it’s chosen for its ability to challenge ingrained assumptions about how best to teach mathematics. How math is traditionally taught and predominantly supported through technology conflicts with how I believe it needs to be taught and how technology could be used to support it. This is why the Jasper Series caught my attention.

Jasper designers have organized instruction around meaningful problems and have chosen technology that promotes inquiry and reasoning well beyond memorization. Scaffolding necessary skills and developing mathematical schema supports students to learn with understanding, and opportuntities to practice after receiving feedback, make revisions, as well as reflect on their perspective in relation to others, all while promoting “collaboration and distributed expertise, as well as independent learning” (Pellegrino, 2001).

The most impressive component of the Jasper Series, especially considering it’s development and application spanned the late 1980s up until early years of 2000s, is the potential it offers students in developing transfer skills due to its commitment towards encouraging multiple feasible solutions to authentic problems. The motivation and engagement to learn and think critically is nurtured in their efforts to unveil “the relevance of math and science to the world outside the classroom” (Pellegrino, 2001). The instructional designers have debunked the myth that math needs to be taught in a linear manner. It’s just too bad more people weren’t listening 30 years ago because they were really on to something great. Mathematics clasasrooms need to be learning communities that foster inquiry. More efffort needs to be placed on incorporating cognitive theory into instructional design to create experiences that develop a “disposition to skilled learning and thinking … to overcome [the] phenomenon of inert knowledge” (Corte, 2007).

image: Connection to Nowhere by Tom Haymes released under a CC Attribution – Noncommercial – Share Alike license


References

Cognition and Technology Group at Vanderbilt (1992a). The Jasper experiment: An exploration of issues in learning and instructional design. Educational Technology, Research and Development, 40(1), 65-80.

Cognition and Technology Group at Vanderbilt (1992b). The Jasper series as an example of anchored instruction: Theory, program, description, and assessment data. Educational Psychologist, 27(3), 291-315.

Corte, E. (2007). Learning from instruction: The case of mathematics. Learning Inquiry, 1, 119–30. doi: 10.1007/s11519-007-0002-4.

Pellegrino, J.W. & Brophy, S. (2008). From cognitive theory to instructional practice: Technology and the evolution of anchored instruction. In Ifenthaler, Pirney-Dunner, & J.M. Spector (Eds.) Understanding models for learning and instruction, New York: Springer Science + Business Media, pp. 277-303.

 

Jasper Impressions

In the late 1980’s and early 1990’s, researchers at Vanderbilt University in Nashville, Tennessee developed and launched The Adventures of Jasper Woodbury, which consisted of a series of videos and mathematical problem solving scenarios aimed at middle school students. The videos depict real people in authentic situations that require math reasoning to solve.

Springing onto the educational scene in 20-30 years ago, this series would have been cutting edge in terms of video quality and problem-based learning. Allowing students to move through problems and challenges at their own pace provided more opportunities for learning,but the video clips viewed in Lesson 1 did not showcase the interactivity potential that is promoted by Vanderbilt. How do expectations for interactivity in a TELE compare between the late 80’s and the present? This goes hand in hand with inquiring into what social collaboration entailed, and how it was used. Given the time frame for this series, asynchronous learning was probably most relevant, but with the advent of greater social media, how could this affect interactions, collaborative opportunities and how collective knowledge is built?

Pedagogical design left me with some questions as well. How did the Jasper Series address diversity of instruction to meet various learning styles? Would this meet expectations today? As interesting as some of the problems seemed, it left me feeling that students seem to be expected to fill and keep a lot of information in their heads as they are navigating the problem. How did this program fare, with specific attention to student abilities and learning styles?

Ultimately, I wonder about what this program would look like with further inquiry embedded into it. That means that less data is handed to students as they try to figure out which variables to change and how resulting in greater complexity of problems.

image: Eyespy by KayVee.INC released under a CC Attribution – Noncommercial – Share Alike license